把两块含45°的直角三角板abc,cde如图所置
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 20:08:15
(1)Rt△ABC中,∠A=30°,BC=1/2AB,又D为AB中点,所以AD=BD=BC.所以∠CDB=60°,△BCD是正△.又CN⊥AB,所以DN=BN=1/2BD①.又∠EDF=90°,∠CD
开始移动时,x=30°,移动开始后,∠POF逐渐增大,最后当B与E重合时,∠POF取得最大值,则根据同弧所对的圆心角等于它所对圆周角的2倍得:∠POF=2∠ABC=2×30°=60°,故x的取值范围是
{1}AC的中点{2}MF⊥AC∵MF⊥AB,ME与∠AMB形成45°角又∵△EMF是直角,∴ME=MF{3}相等,因为中垂线上的一点到两边的距离相等
因原题无图,只能根据文字叙述“猜测”图形,见附图.解(1)、∵∠MBN+∠NDM=180°∴M、B、N、D四点共圆故∠DNC=∠DMB(圆内接四边形的外角等于它的内对角)作DM'⊥AB于M
(1)PD=PE.以图②为例,如图,连接PC∵△ABC是等腰直角三角形,P为斜边AB的中点,∴PC=PB,CP⊥AB,∠DCP=∠B=45°,又∵∠DPC+∠CPE=90°,∠CPE+∠EPB=90°
这两题特别简单,第9题用SSS证就可以了,第十题用SAS证,得出三角形全等,得到角C=角A,就得出平行了cqkk474zaks127pjcy206三角形ADN与三角形BDN为全等三角形,DM=DN,四
过点C′作C′D⊥AB′于点D,由题意得出:∠C′AB′=∠BAB′=30°,AB=AB′=4,∴AC′=4×cos30°=23,∴C′D=3,∴B′C=AB′-AC=4-23,∴S△C′B′C=12
⑴∵AB=4,由图象可知,OC=2,A(-2,0),B(2,0),C(0,2) ,又抛物线关于y轴对称,设解析式为y=ax²+2,则0=4a+2,∴a=-1/2 ∴y=﹣
1.△APD∽△CDQ2.图你自己画,就用一个30°的三角板比划就能画出来∵等腰三角形ABC,∠ABC=120°∴∠DAP=∠DCQ=30°∴∠CDQ∠PDA=150°又∵∠ADP∠APD=150°∴
过D分别作DE⊥AB,DF⊥AC垂足为E、F,易证Rt△DEM≌Rt△DFN,可得DM=DN.也因为Rt△DEM≌Rt△DFN,所以在旋转过程中,直角三角板DEF与△ABC的重叠部分四边形DMBN的面
(1)∵∠ABC=120°,∴∠A=∠C=30°,∵∠ADP+∠APD=150°,∠ADP+∠QDC=150°,∴∠APD=∠CDQ,∴△APD∽△CQD(2)成立;如图所示∵∠ADP+∠APD=15
证明:AF⊥BE,理由如下:由题意可知∠DEC=∠EDC=45°,∠CBA=∠CAB=45°,∴EC=DC,BC=AC,又∠DCE=∠DCA=90°,∴△ECD和△BCA都是等腰直角三角形,∴EC=D
角1=75度,因为不方便贴图,你可以在角上标记一下abc等,再问:这下你可以解释了吧再答:由图可知:三角形DBG是等腰直角三角形,所以角G=45度,角A=60度。由于AIB是直角三角形,所以角AIB=
DE=DF证明:过D点做DG,DH,分别交AC,BC于的G,H.∵在Rt△ABC中AC=BC∴Rt△ABC为等腰直角三角形∴∠C=90°∴∠GDH=90°∵CD⊥AB∴CD是∠C的角平分线(三线合一)
(-6,4)证明:沿c点向下划一虚线,与x轴相交于d点,远点为O,然后证明三角形ABO与三角形ACD全等,即得出C点坐标.
(1)证明:由题意易知,MD⊥DN,连结BD,则∠ADB=90°=∠ADM+BDM=∠BDM+BDN.所以∠ADM=∠BDN,又∠A=∠BDN=45°,AD=BD=跟2/2.所以△ADM≌△BDN,所
过点A作线段AP,使角EAP=角BAE,且AP=AB,连接PE,PF.则根据全等三角形性质,BE=PE,DF=PF,角FPE=角EPA+角FPA=角ABE+角ADF=90度,所以EF的平方=PE的平方
证明:∵AC=BC,CE=CD,∠BCE=∠ACD=90°∴△ACD≌△BCE∴∠CAD=∠CBF∵∠CBF+∠CEB=90°∴∠CAD+∠CEB=90°∴∠AFE=90°∴AF⊥BE
(1)如图1:∵在Rt△ABC中,∠ACB=30°,AB=2,∴AC=ABtan30°=6,∵在Rt△A′DC′中,∠A′C′D=45°,A′C′=6,∴A′D=A′C•tan45°=3.(2)如图2
(1)①因为四边形PECF的四个内角均为直角,所以四边形PECF为矩形.②BC=BD.连接P与C.因为四边形PECF为矩形,所以PC=EF(矩形对角线相等),所以在△PBC和△PBD中,PC=EF=P