把对坐标的曲线积分化成对弧长的曲线积分,其中L为:
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 23:05:33
再问:可是答案是4a^2啊再问:奇怪再答:我感觉应该是你的答案错了吧,我找不出我哪里不对。再问:恩恩,那请问逆时针和顺时针区别在哪呢再答:如果是顺时针,那么用格林公式时要加个负号。
dscosa=曲线对x求导除曲线对x求导的平方加曲线对y求导的平方之和的平方根
这是第二类曲线积分里面最简单的计算.因为书写不便,见图~
事实上这种证明过程无需掌握.曲线积分中的ds表示的是弧长元素,也就是弧微分,在上册定积分的应用一章中,利用定积分计算曲线弧长时,得到公式:ds=√[(dx)^2+(dy)^2],当曲线方程是直角坐标方
把y=z代入x^2+y^2+z^2=1得x^2+2y^2=1,所以设x=cost,y=1/√2sint,所以L的参数方程是:x=cost,y=1/√2sint,z=1/√2sint,t的取值是从0到2
1、第一类对弧长的积分,是计算空间曲线的准确值,不是大约值,是精确值.2、第二类对弧长的积分,计算的不是空间曲线的弧长.如果是数学教师出题,一般都是无聊的纯数学游戏,绝大多数没有任何实质意义.如果是物
两种方法角度θ或t含义不一样,第一种方法t是(2,0)点和圆上连线的角度,在圆上转一圈,t从0变到2π第二种方法θ是(0,0)点和圆上连线形成的角度,圆上转一圈,θ从-π/2变到π/2
将开放教育人才计划从结婚
答:方法一:分成三段:L=L1+L2+L3,其中L1为y=0,L2为x=1,L3为y=2x∮xdy-ydx=∫0到10dx+∫0到21dy+∫0到1xd(2x)-2xdx=0+2+0=2方法2:利用格
注意,参数中t的意义,t指的是圆心角,A处对应的圆心角为0O处对应的圆心角为π所以,积分范围为0→π再问:请问顺时针和逆时针有什么区别吗??还是只要规定正方向即可??再答:逆时针,积分范围为0→π顺时
/>我的方法,好久没看高数了,所以看了看教程就自己做了,这类题通过补的方法挺简单的它上面的方法太麻烦了
∑在xoy面上的投影是圆周x^2+y^2=1,面积是0,所以dxdy=0,∫∫zdxdy=0.∑在yoz面上的投影是矩形区域:0≤z≤3,0≤y≤1,曲面取前侧,所以∫∫xdydz=∫(0到3)dz∫
∂Q/∂x=3∂P/∂y=-6格林公式∮Pdx+Qdy=∫∫(∂Q/∂x-∂P/∂y)dxdyLDL围成
这里已经告诉你积分路径是一个闭合曲线,但是有些人把它说成是线积分是不对的,线积分的积分元为ds或者有些人用dL,但是这里是对dx积分.看你的解法已经把题目中当成dL去积分了,要么是你题目把dL粗心抄错
直接化为定积分来做,Γ由三条有向线段组成,一条是L1:z=0,x^2+y^2=1,x≥0,y≥0,其参数方程是x=cost,t=sint,z=0,t从0到π/2,则积分∫(L1)(y^2-z^2)dx
表示的意义就是区域D的面积
φ(t)在[a,b]连续,在(a,b)可导,根据Lagrange中值定理,存在τ∈(a,b),使φ'(τ)=(φ(b)-φ(a))/(b-a),也即φ(b)-φ(a)=φ'(τ)(b-a).φ(b)-