BP平分角CBE,CP平分角BCD,如图
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 23:02:43
作∠PCB的平分线交PB于E.∵∠ABE=∠CBE=∠ABC/2、∠ACE=∠BCE=∠ACB/2,∴∠BAE=∠CAE=∠BAC/2.∵∠ACD=∠ACP+∠PCD=2∠PCD、∠ABC=∠ABP+
证明:作PM⊥AD于点M,PN⊥BC于点N,PQ⊥AE于点Q∵BP是角平分线∴PM=PN∵CQ是角平分线∴PN=PQ∴PM=PQ∴P在∠BAC的平分线上∴AP平分∠BAC
过点P作PF⊥AE于F,PG⊥BC于G,PH⊥AD于H因为BP,CP分别是∠DBC和∠ECB的角平分线所以PF=PG,PH=PG所以PF=PH所以AP平分∠BAC
证明:作PM垂直AD于M,PN垂直BC于N,PG垂直AE于G.PB平分角DBC,则PM=PN.(角平分线性质);同理可证:PG=PN.故PM=PG(等量代换)所以,PA平分角BAC.(到角两边距离相等
如下:∠ACD=∠ABC+∠A=∠ABC+70°∠PCD=1/2*∠ACD=1/2*∠ABC+35°∠PCD=∠PBC+∠P∠PBC+∠P=1/2*∠ABC+35°∠P=35°
/>∵∠ACD=∠A+∠ABC,CP平分∠ACD∴∠PCD=∠ACD/2=(∠A+∠ABC)/2∵BP平分∠ABC∴∠PBC=∠ABC/2∴∠PCD=∠P+∠PBC=∠P+∠ABC/2∴∠P+∠ABC
证明:过点P作PM⊥AB于M,PN⊥AC于N,PG⊥BC于G∵PM⊥AB,PG⊥BC,BP平分∠CBD∴PM=PG∵PN⊥AC,PG⊥BC,CP平分∠BCE∴PN=PG∴PM=PN∴AP平分∠BAC
证明:过P作三边AB、AC、BC的垂线段PD、PE、PF,∵BP是△ABC的外角平分线,PD⊥AD,PF⊥BC,∴PD=PF(角平分线上的点到角两边的距离相等),∵点P在∠BAC的角平分线上,PD⊥A
∠PCD为△PBC外角,故①∠PCD=∠PBC+∠BPC∠ACD为△ABC外角,故②∠ACD=∠ABC+∠BAC将①式乘以2得2∠PCD=2∠PBC+2∠BPC...③其中2∠PCD=∠ACD.④2∠
角BPC=180°-角PBC-角PCB=180°-1/2(角ABC+角DCB)=180°-1/2(360°-角A-角D)=180°-180°+1/2(角A+角D)所以:2角BPC=角A+角D
∠A=50,所以∠ABC+∠ACB=130∠ACP=1/2(180-∠ACB)=90-∠ACB/2∠P=180-∠PBC-(∠ACB+∠ACP)因为∠PBC=∠ABC/2所以∠P=180-∠ABC/2
关系:∠BPC=90°+1/2∠A证明:在ABC中,∠ABC和∠ACB的平分线相交于点P所以∠BPC=180°-(∠PBC+∠PCB)=180°-(1/2∠ABC+1/2∠ACB)=180°-1/2(
在BC延长线上取点E∵∠A+∠ABC+∠ACB=180∴∠ABC+∠ACB=180-∠A∵∠ACE=180-∠ACB,CP平分∠ACE∴∠PCE=∠ACE/2=(180-∠ACB)/2=90-∠ACB
∠ACM=∠A+ABC∠PCM=∠P+∠PBC已知∠ABC=2∠PBC∠ACM=2∠PCM则2∠PCM=∠A+ABC=∠A+2∠PBC=∠A+2∠PCM-2∠P可求∠A=∠P再问:∠A=∠P?
已知,点P在△ABC的外角平分线BP上,可得:点P到直线AB和直线BC的距离相等;已知,点P在△ABC的外角平分线CP上,可得:点P到直线AC和直线BC的距离相等;所以,点P到直线AB和直线AC的距离
在AB上取一点E,使得AE=AC,连接EP,那么在三角形AEP和三角形ACP中AP=AC角EAP=角CAPAP=AP三角形AEP和三角形ACP全等.角ACP=角AEP为锐角,那么角BEP为钝角,所以B
∵∠A=86°,∴∠ABC+∠ACB=94°又∵BP平分∠ABC,CP平分∠ACB∴∠PBC=1/2∠ABC,∠PCB=1/2∠ACB.∴∠PBC+∠PCB=1/1(∠ABC+∠ACB)=47°.∴∠
过P点分别作AE\AD\BC\的垂线段,垂足分别为XYZ因为BP平公角CBD,所以PY=PZ,(角平分线的性质)同理可得PX=PZ得PX=PY=PZ,则AP平分∠BAC,(角平分线的性质逆定理)
过点P做PM⊥AE,PN⊥AF,PK⊥BCPB平分∠CBEPM=PKPC平分∠BCFPK=PNPM=PNAP平分角BAC
过P依次向AB、BC、CD、AD作垂线,垂足依次为E、F、G、H.∵AP平分∠BAD、PH⊥AH、PE⊥AE,∴PH=PE,又AP=AP,∴Rt△PAH≌Rt△PAE,∴AH=AE.······①∵P