抛物线y 1 2x的平方 3 2x 2

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 17:58:28
抛物线y 1 2x的平方 3 2x 2
设双曲线x2/a2-y2/b2,a>0,b>0.的渐近线与抛物线y=x2+1相切,求双曲线的离心率.2代表平方

渐近线为y=正负(b/a)*x由于对称性,一条相切的话那么两条都相切的.所以只考虑一条就ok不妨考虑y=(b/a)x上式与y=x²+1联立得到x²-(b/a)x+1=0相切则只有一

若一元二次方程ax平方+bx+c=0的根为x1=-5,x2=2则抛物线y=ax平方+bx+c与x轴交点坐标为?若抛物线y

(1)依题意知x²+2x-3=0的两根分别为x1=﹣3、x2=1,即B(﹣3,0)、C(1,0),那么抛物线交点式为y=a(x-1)(x+3)=ax²+2ax-3a,即有b=2a,

已知y=a(x-h)平方+k是由抛物线y=-1/2x2向上平移2个单位,再向右平移一个单位得到的抛物线

答:1)y=(-1/2)x²向上平移2个单位:y=(-1/2)x²+2向右平移1个单位:y=(-1/2)(x-2)²+2对照y=a(x-h)²+k得:a=-1/

过点P(2,0)且斜率为K的直线L交抛物线Y的平方=2x于M(x1,y1)N(x2,y2)两点

由题设函数为y=kx+b带入点P(2,0)得到0=2k+b则b=-2k从而y=kx-2k因为直线L与y²=x交于两点则(kx-2k)²=xk²x²-4k

如图,一元二次方程x的平方+2x-3=0的二根x1、x2(x1小于x2)是抛物线y=ax平方+bx+c与x轴的两个交点B

(1)依题意知x²+2x-3=0的两根分别为x1=﹣3、x2=1,即B(﹣3,0)、C(1,0),那么抛物线交点式为y=a(x-1)(x+3)=ax²+2ax-3a,即有b=2a,

1 当x=-1,y有最大值4,抛物线与x轴的交点的横坐标为x1,x2 ,且x1的平方+x2的平方=10,

令抛物线为y=ax2+bx+c,∵x1的平方+x2的平方=10∴(x1+x2)的平方=x1的平方+x2的平方+2倍x1x2即:(-b/a)的平方=10+2×(c/a)……①∵当x=-1时,y的最大值=

过抛物线y平方=4x的焦点做直线交抛物线于A(X1,Y1),B(X2,Y2)两点,如果X1+X2=6,则|AB|的值为?

解;焦点(1,0)准线:X=-1,由抛物线定义可知,点A到焦点距离为:X1+1,同理,得,点B到焦点距离为X2+1,而直线AB过焦点,故|AB|=X1+1+X2+1=6+2=8再问:能不能具体一点,为

已知抛物线y=x2+2m-m2 即:y等于x的平方加2m减m的平方 1:抛物线过原点 2:抛物线

这应该是两个题1、已知抛物线y=x2+2m-m2即:y等于x的平方加2m减m的平方,抛物线过原点,求m的值抛物线过原点,有x=y=0所以0=0+2m-m²m(m-2)=0m=0或m=22、已

抛物线y=2x2的对称轴为______.

∵抛物线y=2x2中,a=-2,b=0,∴对称轴为x=-b2a=0,即为y轴.

过抛物线y=4x平方的焦点做直线交抛物线于A(x1,y1),B(x2,y2)两点,若y1+y2=5,求线段AB的长.

x²=y/4即2p=1/4则p/2=1/16所以准线是y=-1/16而y1+y2=5所以两点到准线距离的和=(y1+1/16)+(y2+1/16)=41/8抛物线定义A个B到准线距离等于到焦

已知A(x1,y1),B(x2,y2)是抛物线y平方=4x上的点,F是抛物线的焦点.若向量AF=mBF(m不等于0,m∈

焦点F(1,0)向量AF=(1-x1,-y1)向量BF=(1-x2,-y2)因为AF=mBF所以y1=my21-x1=m(1-x2)(1)x1+x2=6(2)联立两式得(m+1)x1=1+5m注意m+

经过抛物线x平方=4y的焦点作弦MN,若M M两点的坐标分别为(x1,y1) (x2,y2),则x1x2=?

由题意得,MN斜率显然存在,焦点(0,1)设MN:y-1=kx①x平方=4y②x^2-4kx-4=0x1x2=-4

抛物线y=x2+3x的顶点在(  )

将y=x2+3x变形,可得:y=(x+32)2-94,则顶点坐标为(−32,−94),则此点位于第三象限.故选C.

已知抛物线Y=-X2 (是X的平方)

方法一:假设(x,-x^2)是抛物线y=-x^2的点,所以点到直线4x+3y-8=0距离为:|4x-3x^2-8|/5=|3x^2-4x+8|/5=|3(x-2/3)^2+20/3|/5故最小值是:(

已知抛物线y=x2-kx+4(x2表示x的平方)图象的顶点在x轴上,求k的值

抛物线y=x²-kx+4的对称轴为x=k/2∵顶点在x轴上∴x=k/2时y=0(k/2)²-k(k/2)+4=0得k=4或k=-4

设抛物线y=x平方+kx+4与x轴有两个不同的交点(x1,0),(x2,0),则

y=x^2+kx+4的两根为x1,x2△=k^2-16>0k^2>16由韦达定理x1+x2=-kx1x2=4x1^2+x2^2=(x1+x2)^2-2x1x2=k^2-8>16-8=8证毕

抛物线抛物线y=ax的平方+bx+c.

将A、B点坐标代入抛物线方程,得c=1,4a+2b+c=-3即2a+b=-2,又因为抛物线关于x=-1对称,则也过A'(-2,1),代入得2a=b,综上,a=-1/2,b=-1,c=1.抛物线解析式为

2次函数的题目已知抛物线Y=AX平方与直线Y=KX+3交于(X1,2分之9)和(X2,2).其中X1,X2(X1小于X2

x^2-x-6=0(x-3)(x+2)=0x1>x2所以x1=3,x2=-2(3,9/2)代入抛物线和直线9/2=A*3^2=9AA=1/2(-2,2)代入y=kx+32=-2k+3k=-1/2所以y

已知抛物线y=x平方+mx+m-5 当m为何值时,抛物线与x轴的两交点A(x1,0),B(x2,0)

即b方-4ac>0,则:m平方-4m+20>0m是任何实数时,此式都大于0.故m是任何实数时,抛物线与X轴的两交点A(X1,0),B(X2,0)