抛物线y=-12x^2 32x 2与x轴交于a,b与y轴

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 21:45:47
抛物线y=-12x^2 32x 2与x轴交于a,b与y轴
已知:抛物线y=-3x2+12x-8.

(1)y=-3x2+12x-8=-3(x2-4x)-8=-3(x-2)2+12-8=-3(x-2)2+4,函数y=-3x2+12x-8的对称轴为x=2,顶点坐标为(2,4).(不用配方法不给分)(2分

已知抛物线y=12x2+x+c与x轴没有交点.

(1)∵抛物线y=12x2+x+c与x轴没有交点.∴△=1-4×12c=1-2c<0,解得c>12;(2)∵c>12,∴直线过一、三象限,∵b=1>0,∴直线与y轴的交点在y轴的正半轴,∴直线y=cx

将抛物线C1:y=-根号3X2+根号3沿x轴翻折,得抛物线C2

沿x轴翻折,将原式中的y变为-y即可:-y=-√3x²+√3y=3x²-√3

已知抛物线C1:y=x2-4x-3,求关于x轴对称的抛物线C2的解析式

关于x轴对称的抛物线,也就是把C1:y=x2-4x-3里面的y变成-y,即-y=x2-4x-3,C2的解析式是y=-x2+4x+3

抛物线Y=X2+(M+2)X+3(M-1)与x轴交点的个数

令y=0,∵△=(m-4)^2≥0,∴抛物线与x轴交点的个数为2或1.

如图,抛物线y=x2-2x-3与x轴交A、B两点

容易求得A点坐标(-1,0)B坐标(3,0)C坐标(2,-3)AC方程y/(x+1)=(0+3)/(-1-2)y=-x-1设P点为(x0,y0)y0=-x0-1(-1=

求抛物线y=x2-2x-8与x轴的交点之间的距离

y=0解得x1=4,x2=-2,所以他们的距离是6,.

抛物线y=x2到直线x-y-2=0的最短距离为(  )

抛物线上设点P(x,y),则点P到直线x-y-2=0的距离为d=|x−y−2|2∵点P(x,y)在抛物线y=x2上∴y=x2,∴d=|x−x2−2|2=|−(x−12)2−74|2∴当x=12时,dm

已知抛物线y=x2+3x-5,求此抛物线在x=3处的切线方程

求导的y'=2x+3在x=3k=9所以切线为y-13=9(x-3)

将抛物线y=2x2-12x+16绕它的顶点旋转180度,所得抛物线的解析式是( ) A.y=-2x2-12x+16 B.

可以用排除法.原抛物线顶点为(3,-2),绕顶点旋转180°后仍过点(3,-2),代入四个答案,只有D符合.

将抛物线y=2x2-12x+16绕顶点旋转180度,所得抛物线解析式是

整理y=2(x2-6x+8)y=2(x2-6x+9-1)y=2(x-3)方-2所以顶点坐标为(3,-2)绕顶点旋转180,只是开口方向发生了改变即y=-2(x-3)方-2展开即可

直线y=3x+4与抛物线y=x2的交点坐标为

3x+4=x2解方程得:x=4或x=-1x=4时,y=16x=-1时,y=1交点坐标为(4,16)(-1,1)

已知:抛物线y=x2+5x+m与x轴交于ab两点,p是抛物线顶点

抛物线定点p(-5/2,m-25/4)a+b=-5ab=m(a-b)²=(a+b)²-4ab=25-4m>0m

已知抛物线y=-x2+2x+2,

(1)∵抛物线y=-x2+2x+2中,a=-1,b=2,c=2,∴该抛物线的对称轴x=-b2a=-2−2=1,定点的纵坐标为:4ac−b24a=−8−4−4=3,∴该抛物线的对称轴是x=1,顶点坐标是

已知抛物线y=-x2+2x+2

(1)∵y=-x2+2x+2=-(x2-2x+1-1)+2=-(x-1)2+3,∴抛物线y=-x2+2x+2的对称轴为:x=1,顶点坐标为(1,3);(2)∵抛物线y=-x2+2x+2 的对

与抛物线y=-x2+2x+3,关于x轴对称的抛物线的解析式为______.

∵y=-x2+2x+3=-(x-1)2+4,顶点坐标为(1,4),(1,4)关于x轴对称的点的坐标为(1,-4),而两抛物线关于x轴对称时形状不变,只是开口方向相反,∴抛物线y=-x2+2x+3,关于

抛物线y=x2+3x的顶点在(  )

将y=x2+3x变形,可得:y=(x+32)2-94,则顶点坐标为(−32,−94),则此点位于第三象限.故选C.

已知抛物线Y=-X2 (是X的平方)

方法一:假设(x,-x^2)是抛物线y=-x^2的点,所以点到直线4x+3y-8=0距离为:|4x-3x^2-8|/5=|3x^2-4x+8|/5=|3(x-2/3)^2+20/3|/5故最小值是:(

(2013•长春一模)如图,抛物线y=x2,y=12x

∵点A的横坐标为-1,∴y=12×(-1)2=12,y=-14×(-1)2=-14,∴点A(-1,12),B(-1,-14),∴AB=12-(-14)=34,根据二次函数的对称性,BC=1×2=2,阴