抛物线y=2(x-3 4)2 m(m为常数)与x轴交于AB两点

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 20:20:06
抛物线y=2(x-3 4)2 m(m为常数)与x轴交于AB两点
已知抛物线y=(x-m)的平方+2的顶点在y=2x上,则m等于?

y=(x-m)^2+2的顶点坐标为(m,2)所以(m,2)在y=2x上即2=2m所以m=1

已知抛物线y=x^2-(m-4)x-(m-1),若抛物线与X轴两交点都在原点左侧,求M的取值范围

满足2个条件第一开口向上,题意已经满足第二F(0)>0即-m+1>0所以得到M=0有b^2-4ac>=0求出M取一切实数等式恒成立,所以M

已知抛物线Y=x2+2x+m-1,若抛物线与直线y=x+2m只有一个交点,求m的值

把y=x+2m代入抛物线的解析式,成为一个一元二次方程,因为抛物线与直线只有一个交点,于是所得的一元二次方程的两实数根相等,根据判别式等于0,又得到一个关于m的方程,解之即可.

已知抛物线y=5x^2+(m^2-4)x+1-m的顶点在y轴的正半轴上

顶点在y轴的正半轴上,当且仅当m^2-4=0,1-m>0,解得m=-2

抛物线y=x^2+2mx+(m^2-m+1)的顶点在第三象限

抛物线y=x^2+2mx+(m^2-m+1)的顶点在第三象限x=-m1m的取值范围:m>1

已知抛物线y=x^2-(m-3)x-m 试求,当m为何值时,抛物线与x轴的两个交点间距离等于3

M=0或2,用手机上的,过程不太好写,要过程的话,回去写给你.过程|x1-x2|=3(x1-x2)^2=9(x1+x2)^2-4x1x2=9因为x1+x2=-b/ax1*x2=c/a所以(m-3)^2

抛物线y=2x

∵抛物线是二次函数的图象,∴m2-4m-3=2,解得m=-1或m=5,又顶点在x轴下方,∴m-5<0,即m<5,∴m=-1.

抛物线Y=X2+(M+2)X+3(M-1)与x轴交点的个数

令y=0,∵△=(m-4)^2≥0,∴抛物线与x轴交点的个数为2或1.

已知二次函数y=x^2-(m-3)x-m的图像是抛物线,m为何值时,抛物线与x轴的两个交点之间

gjttgjtt,(1)y=x^2-(m-3)x-m令y=00=x^2-(m-3)x-m根据韦达定理:{x1+x2=m-3{x1x2=-m∵(x1-x2)^2=(x1+x2)^2-4x1x2.①由题意

已知抛物线y=x的平方+mx+2m一m的平方

13、y=x^2+mx+2m-m^2=(x+m/2)^2-m^2/4+2m-m^2=(x+m/2)^2-5m^2/4+2m(1)过(0,0)0=0^2+m*0+2m-m^2m^2-2m=0m(m-2)

已知抛物线y=x²+2x+m-1,若抛物线与直线y=x+2m只有一个交点,求M的值

所谓只有一个交点,就是x²+2x+m-1=x+2m的方程式x只有一个解.x²+2x+m-1=x+2m则(x+1/2)²=m+5/4x+1/2=+/-(m+5/4)的开平方

已知抛物线y=x²+2(m-1)x+2m-3

y=x2+2(m-1)x+2m-3=[x+(m-1)]^2+2m-3-(m-1)^2=[x+(m-1)]^2+4m-m^2-4C点坐标为(-(m-1),4m-m^2-4)抛物线性质AC=BC,OC=5

已知抛物线Y=X平方+2X+M-1.(1)若抛物线与直线Y=X+2M只有一个交点,求M的值.

把Y=X+2M带进Y=X平方+2X+M-1得X+2M=X平方+2X+M-1,整理得X平方+X-(M+1)=0因为只有一个交点,所以X平方+X-(M+1)=0的△=0即1+4(M+1)=4M+5=0所以

已知:抛物线的解析式为y=x2-(2m-1)x+m2-m,

证明:(1)令y=0得:x2-(2m-1)x+m2-m=0①∵△=(2m-1)2-4(m2-m)×1>0(3分)∴方程①有两个不等的实数根,∴原抛物线与x轴有两个不同的交点(4分);(2)令:x=0,

已知抛物线y=x2+2m-m2 即:y等于x的平方加2m减m的平方 1:抛物线过原点 2:抛物线

这应该是两个题1、已知抛物线y=x2+2m-m2即:y等于x的平方加2m减m的平方,抛物线过原点,求m的值抛物线过原点,有x=y=0所以0=0+2m-m²m(m-2)=0m=0或m=22、已

已知二次函数y=x^2-(m-3)x-m的图像是抛物线

设X1、X2为一元二次方程x^2-(m-3)x-m的两根.则PQ^2=(X1-X2)^2=(X1+X2)^2-4X1X2根据韦达定理有:X1+X2=m-3X1X2=-m代入得:PQ^2=(m-3)^2

已知抛物线y=-x^2+mx-m+2.求证:这个抛物线的图象与x轴有两个交点.

与x轴交点,就是y=0,有1个交点就是b^2-4ac=0,两个交点b^2-4ac>0没有交点就是b^2-4ac0则这个抛物线的图象与x轴有两个交点.

已知抛物线y=x2+(m-2)x-2m,当顶点在Y轴上求m的值

顶点在Y轴上就是对称轴为X=-(M+2)/2=0M+2=0M=-2象这种对称轴在Y轴上的,其实直接使用y=ax²+bx+c中的b=0在考试中间是认可的