抛物线y=2x²,y=-3x²,y=½x²
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 16:29:10
x的平方-3x-2=0x=3±√(3²+4×2)/2=(3±√17)/2;∴抛物线y=x的平方-3x-2与x轴交点坐标是:[(3+√17)/2,0];[(3-√17)/2,0];再问:能不能
y=x^2-2x-3=(x+1)(x-3)=0所以,A点坐标(-1,0),B点坐标(3,0)C点坐标:x=0是的y值即,C点坐标(0,-3)假设:P(x1,y1),当顶点P或G恰好落在Y轴上时,即有P
∵抛物线y=12x2+bx经过点A(4,0),∴12×42+4b=0,∴b=-2,∴抛物线的解析式为:y=12x2-2x=12(x-2)2-2,∴抛物线的对称轴为x=2,∵点C(1,3),∴作点C关于
∵抛物线y=12x2+3的顶点为A和抛物线y=12(x−2)2的顶点为B,∴A(0,3),B(2,0),设直线AB的解析式为y=kx+b,则b=32k+b=0,解得k=−32b=3.∴直线AB的解析式
∵抛物线是二次函数的图象,∴m2-4m-3=2,解得m=-1或m=5,又顶点在x轴下方,∴m-5<0,即m<5,∴m=-1.
当y=0时x^-2x-3=0(x-3)(x+1)=0x1=3x2=-13-(-1)=4所以长度为4
将y=x-2与y²=2x联立消去x得:(x-2)²=2x,x²-6x+4=0,设A(x1,y1),B(x2,y2).则x1+x2=6,x1x2=4.则x1x2+y1y2=
由抛物线C1可得出C1经过点(1,-4)(-1,0)(3,0)因为C1与C2关于x轴对称所以C2讲过点(1,4)(-1,0)(3,0)所以C2为y=-x²+2x+3因为直线y=x+b(b>0
将y=x+2与Y=X平方+2X联列方程组并消去y得x^2+2x=x+2,移项得x^2+x-2=0,用求根公式或用十字相乘法得x=-2或x=1,所以交点坐标为(-2,0)(1,0)
根为3和-1再问:���再问:�ܽ����再答:再答:�в��У�����再问:���������再答:���������ʵ���再答:��ʽ�ֽⷨ��һԪ���η���再问:������再答:���
关于x轴对称,则横坐标不变,纵坐标是相反数所以-y=-x^2-2x+3即y=x^2+2x-3
解题思路:y=3(x²+2x/3)=3(x²+2x/3+1/9-1/9)=3(x²+2x/3+1/9)-1/3=3(x+1/3)²-1/3解题过程:y=3(x²+2x/3)=3(x²+2x/3+1/9
配方,y=x²+2x+1=(x+1)²,顶点为(-1,0),y=x²-3的顶点是(0,-3)所以将抛物线y=x²+2x+1先向右平移1个单位,再向下平移3个单位
令y=3x^2-x-2=0解得xA=-2/3,xB=1则抛物线与x轴的交点为A(-2/3,0)和B(1,0)(1)过点A的切线设为y=kx+b联立方程可得3x^2-x-2=kx+b整理得:3x^2-(
∵y=-x²+2x+2=-(x-1)²+3∴抛物线的开口向下,对称轴是直线X=1在对称轴的右侧,Y随X的增大而减小.由x1>x2>1,可知点A,B都在对称轴的右侧,则y1
1、y=x²-2x-3 =(x-3)(x+1)当y=0时,x=3或x=-1当x=0时,y=-3所以a、b坐标为(-1,0)和(3,0)c坐标(0,-3)2、S△abc=(1/2)*
把-1/2提在前面当作a,然后一步步化成它需要的形式,楼上回答很清楚了.由于a小于0,开口向下,无最小值,只有最大值,当横坐标等于对称轴时极为最大值.又第一问中可看出对称轴为x=1可以自己做出一个大致
Y=X^2+2X+3即用-X代替X代入原式即可
∵y=3x²-2x=3(x²-2x/3)=3(x²-2x/3+1/9-1/9)=3(x-1/3)²-1/3∴抛物线y=3x²-2x可由抛物线y=3x&