抛物线y=2x方上的点到直线4x-3y 1=0的距离最小值

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 21:15:10
抛物线y=2x方上的点到直线4x-3y 1=0的距离最小值
求抛物线y^2=64x上的点到直线4x+3y+46=0的距离的最小值,并求取得最小值时的抛物线上的点的坐标

抛物线y^2=64x上的点M(a^2,8a),到直线4x+3y+46=0的距离L:L=|4a^2+3*8a+46|/√(4^2+3^2)=|4(a+3)^2+10|/5a=-3,M(9,-24),L最

求抛物线y^2=64x上的点到直线4x+3y+46=0的距离的最小值,并求取的最小值时的抛物线上的点的坐标

设点的坐标为(t^2,8t)则点到直线的距离=|4t^2+24t+46|/5先求分子的最小值4t^2+24t+46=4(t+3)^2+10当t=-3时点到直线的距离=10/5=2点的坐标为(9,-24

已知抛物线 y^2=4x上一点P到抛物线准线的距离为5,求过点P和原点的直线的斜率.

准线是x=-1,P到抛物线准线的距离为5,则P的横坐标为4,把x=4代入抛物线得y=±4;所以P(4,±4)当P(4,4)时,Kop=1;当P(4,-4)时,Kop=-1;希望能帮到你,如果不懂,请H

已知抛物线y^2=4x上一点P到该抛物线的准线距离为5,则过点P和原点直线的斜率为?

其准线为x=-1p到准线的距离为5则铺垫的坐标可为(4,-4),(4,4)则斜率k为4/4=1和-4/4=-1

已知抛物线y方=4x上一点,p到抛物线的准线的的距离为5 则过点p和原点的直线的斜率为

直线的斜率为C1或-1设点p坐标为(X,Y),p到抛物线的准线的的距离为5,故X+1=5,X=4,Y=+4或-4,直线的斜率为=Y/X=+1或-1

已知点A(x,y)在抛物线y方=4x上运动,求z=x方+y方/2+3的最小值.

y^2≥0,又y^2=4x,因此4x≥0x≥0y^2=4x代入z=x^2+y^2/2+3z=x^2+y^2/2+3=x^2+2x+3=(x+1)^2+2当x=0时,z有最小值=1^2+2=3

P是抛物线y^2=3x上的点,则P到直线3x+4y+15=0距离的最小值

说说思路:后面那个直线的斜率是-3/4,设一条斜率是-3/4的直线,让它与抛物线相切,也就是说和抛物线的方程联合后只有一组解,然后求两条直线之间的距离即为最小值,明白乎

求抛物线y^2=8x上的点到直线4x+3y+7=0的最短距离

设抛物线上的点PP纵坐标是a,则x=y^2/8=a^2/8所以P(a^2/8,a)P到直线距离=|a^2/2+3a+7|/根号(4^2+3^2)a^2/2+3a+7=1/2(a+3)^2+2.5所以分

求抛物线y=x^2上到直线2X-y-4=0的距离最短的点的坐标及最短距离

直线方程y=2x-4,这种题是先假设方程y=2x+a与抛物线相切;联立两方程y=x^2和y=2x+a,得x^2-2x-a=0,则deta=(-2)^2+4a=0,解得a=-1,将a=-1代入x^2-2

抛物线y=-2x^2上的点到直线4x-3y+4=0 的最短距离

设抛物线上点为(t,-2t²),则d=|4t-3·(-2t²)+4|/5=(6/5)·|(t+1/3)²+5/9|∴t=-1/3时,d|min=25/54.代回所设知切点

已知直线L1:4x-3y+6=0和直线L2:x=0抛物线y^2=4x上一动点p到直线L1和直线L2距离之和的最小值是?

抛物线y²=4x焦点是F(1,0),准线x=-1∴P到准线的距离等于PF∴P到x=0的距离等于|PF|-1∴p到直线L1和直线L2距离之和为PF+P到L1的距离-1≥F到L1的距离-1最小值

一道抛物线的题目.已知M点为抛物线y=x^2上的一个动点,求点M到直线2x-y=4的最短距离.

M(a,b)则b=a²所以距离d=|2a-a²-4|/√(2²+1²)=|a²-2a+4|/√5=|(a-1)²+3|/√5(a-1)&su

已知抛物线y方等于四x直线x减y加三等于0求抛物线上的点到直线的最小距离

那个切点就是距离最短的点(1,2),Y撇的表达式就是抛物线上任一点的切线斜率

抛物线y^2=-x上的点到直线4x+3y-8=0的距离的最小值

设该点为(x,y).用点到直线公式d=|4x+3y-8|/5,又y^2=-x,x=-y^2,d=|-4y^2+3y-8|/5=|-4(y-3/8)^2-119/16|/5=119/80

抛物线y=x方-2x+c的顶点A在直线y=-x+3上,直线y=-x+3与x轴的交点为B点,点O为直线坐标系的原点

1、y=x²-2x+1-1+c=(x-1)²-1+c顶点(1,-1+c)在y=-x+3-1+c=-1+3c=3y=-x+3=0x=3B(3,0)2、O(0,0)所以OB=|3-0|

在抛物线y^2=4x上求一点P,使得点P到直线y=x+3的距离最短

该命题可转化为求一条平行于y=x+3的直线y=x+b与抛物线y^2=4x相切,求出切点,此时点P到直线y=x+3的距离最短(画图更直观)联立方程y=x+b,y^2=4x得,x^2+(2b-4)x+b^

抛物线y=x2上的点到直线x-y-2=0的最短距离为(  )

设抛物线上的任意一点M(m,m2)M到直线x-y-2=0的距离d=|m−m2−2|2=|(m−12)2+74|2,由二次函数的性质可知,当m=12时,最小距离d=728.故选B.

抛物线y=x2上的点到直线2x-y=4的最短距离是(  )

设抛物线y=x2上的点的坐标为(x,y),则由点到直线的距离公式可得d=|2x−y−4|5=|2x−x2−4|5=|−(x−1)2−3|5≥355∴抛物线y=x2上的点到直线2x-y=4的最短距离是3

抛物线y=-x^2上的点到直线4x+3y-8=0距离的最小值是?

设点为(x,y)则距离d=|4x+3y-8|/5=|4x-3x²-8|/5=|3x²-4x+8|/5因为3x²-4x+8=3(x-2/3)²+20/3所以当x=