抛物线y=ax² bx c(abc为常数)经过点(-1,0)和(m,0)
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 09:56:28
[[[注:结论直径上的圆周角是直角.到圆心距离等于半径的点在圆上.]]]解易知,B(3,0),C(0,3),D(2,-1),M(2,1)O2(2,0)经过两点C,D的直线为:y=-2x+3.经过两点O
c/a0时,图象开口向上,点C在原点下面,c0)OC^2=c^2c^2=-c/aac=-1有什么疑问吗?
a大于0开口向上b是判断抛物线左右c是确定抛物线在y轴上的距离再问:c是确定抛物线在y轴上的距离什么意思?再问:b大于0会怎样再答:c是常数项决定抛物线与y轴交点。抛物线与y轴交于(0,c)这样懂了吧
答:抛物线方程y=-ax^2+3ax+2=-a(x-3/2)^2+2+9a/4所以抛物线对称轴x=3/2,故点C一定在对称轴的右侧.令x=0,y=2,所以点A(0,2)令y=-ax^2+3ax+2=0
第一个是与什么有交点?要是与X轴,就x^2+ax+a+2=0,求出x的2个值.两点距离最短,就只有1个交点,根据b^2-4ac=0,得出a^2-4(a+2)=0,得出a.2,根据y=x^2-(k+1)
解题思路:利用“减右加左”的平移法则来平移,再利用经过B(0,4)来求出a,然后利用轴对称的知识找出点P。解题过程:解答过程见附件。最终答案:略
(1)抛物线:y=3x²+2x+c①当△=0时即△=4-12c=0c=⅓交点:x=-⅓在(-1,1)范围内故c=1/3②当△>0且左侧交点在(-1,1)范围内时即c<
∵有最高点∴a<0①;∵最大值是4,∴(4ac-b∧2)/4a=4②;再代入(3,0)(0,3)得9a+3b+c=0③;c=3④;①②③④即可得解再问:我奇迹般的比你先做出来,不过还是谢谢你再答:呵呵
(1)设点A(x1,0),B(x2,0),C(0,c)则OA=-x1,OB=x2,OC=c;AB=x2-x1.∵x1,x2是方程ax²+bx+c=0的两个根∴x1+x2=-b/a,x1x2=
c=216a+4b+c=025a+5b+c=-3a=-1/2b=3/2c=2y=(-x²+3x+4)/2
y=ax²+bx+c的顶点坐标=a(x+b/2a)²+c-b²/4a;顶点坐标为(-b/2a,c-b²/4a)您好,很高兴为您解答,skyhunt
解题思路:分析抛物线过两点,由待定系数求出抛物线解析式;根据D、E中点坐标在直线BC上,求出D点关于直线BC对称点的坐标;有两种方法:法一作辅助线PF⊥AB于F,DE⊥BC于E,根据几何关系,先求出t
解题思路:利用二次函数的图像性质及三角形的相似性质进行解答解题过程:
运用了加法交换定律乘法交换律乘法分配律
抛物线y=ax^2+2ax+b与y轴交于B,则B(0,b).抛物线y=ax^2+2ax+b的对称轴为x=-(2a)/(2a)=-1由AB‖x轴可知A、B两点的纵坐标相等,且A、B两点关于对称轴对称.所
抛物线y=x²+3向左平移1个单位后得到y=(x+1)²+3=x²+2x+4所以a=1,b=2,c=4
(△ABG+△BCD+四边形OABC)面积对称与四边形ODEF面积所以说△ABG+△BCD面积=10-6=4
(1)抛物线的对称轴为x=-−3a2a=32;(2)将A(-1,0)代入y=ax2-3ax+4得,a+3a+4=0,解得a=-1,解析式为y=-x2+3x+4.当y=0时,原式可化为x2-3x-4=0
将A、B点坐标代入抛物线方程,得c=1,4a+2b+c=-3即2a+b=-2,又因为抛物线关于x=-1对称,则也过A'(-2,1),代入得2a=b,综上,a=-1/2,b=-1,c=1.抛物线解析式为
y=ax^2,x^2=2*(1/2a)*y,即p=1/2a所以F(0,p/2)即F(0,1/4a),准线l:y=-p/2即y=-1/4a(1)直线L斜率不存在.易得只有一交点,不合题意(2)设直线L: