抛物线y=x2-2x-3交x轴于a(-1.0),b(3.0)以ab为弦

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 19:02:27
抛物线y=x2-2x-3交x轴于a(-1.0),b(3.0)以ab为弦
已知抛物线y=-2/3x2+bx+c与x轴交于不同的两点A(x1,0)和b(x2,0),与y轴交于点C,且x1,x2是方

1)  首先根据“x1、x2是方程x2-2x-3=0的两个根(x1<x2)”求出二次函数的两个根x1 = -1,x2=3,再将其代入二次函数的一般式,列出

如图,抛物线y=x2-2x-3与x轴交于A,B两点,与y轴交于点C,点D是抛物线的顶点(1)请求出A、B、D的坐标(2)

1)令y=0x^2-2x-3=0(x-3)(x+1)=0x=3或者x=-1AB坐标分别为A(-1,0)和B(3,0)令x=0得y=-3C坐标为(0,-3)y=(x-1)^2-4顶点坐标为D(1,-4)

九下二次函数!已知抛物线Y=x^2-(k-3)x+k+4与X轴交与两点A(x1,0),B(x2,0)与Y轴交与C(0,x

1)x1和x2是一元二次方程x²-(k-3)x+k+4=0的两个根∴x1x2=k+4x3是抛物线与Y轴的交点,则x3=k+4∴x3=x1x22)三角形ABC是直角三角形,则AC⊥BCAC的斜

抛物线y=x2-2x-3与x轴交于A、B两点(A在B左侧),D为抛物线顶点,直线y=x+1与抛物线交于A、C两点。 (1

解题思路:本题目主要考查一次函数和二次函数的联用,以及三角形的面积等知识。解题过程:

如图,在平面直角坐标系中,抛物线y=-x2+2x+3与x轴交于A,B两点,与y轴交于点C,点D是该抛物线的顶点.

(1)当y=0时,﹣x2+2x+3=0,解得x1=﹣1,x2=3.∵点A在点B的左侧,∴A、B的坐标分别为(﹣1,0),(3,0).当x=0时,y=3.∴C点的坐标为(0,3)设直线AC的解析式为y=

如图,在平面直角坐标系中,抛物线y=-x2+2x+3与x轴交于A,B两点,与y轴交于点C,点D是该抛物线的顶点. 如图,

⑴直线AC:Y=3X+3,⑵直线PQ∥AC,AC=PQ①令Y=3得,-X^2+2X+3=3,X=2或0(舍去),∴Q1(2,3)②令Y=-3得,-X^2+2X+3=-3,X^2-2X+1=6+1,(X

如图 抛物线y=-x2+2x+3与x轴交于A,B 两点,与 y轴交于点C,对称轴与抛物线交于点P,与直线BC 交于点M,

(1).y=-x²+2x+3=-(x²-2x)+3=-[(x-1)²-1]+3=-(x-1)²+4对称轴:x=1;顶点P(1,4);C(0,3);A(-1,0)

抛物线y=-x2+2x+3与x轴交与A.B两点,与x轴交与C点,抛物线的顶点为M,则△ABC的面积S△ABC=?△ABM

y=-(x-1)^2+4=(3-x)(1+x),A(-1,0)、B(3,0)与y轴的交点C(0,3),顶点M(1,4)S△ABC=1/2*|xA-xB|*yC=1/2*4*3=6S△ABM=1/2*|

如图,抛物线y=x2-2x-3与x轴交A、B两点

容易求得A点坐标(-1,0)B坐标(3,0)C坐标(2,-3)AC方程y/(x+1)=(0+3)/(-1-2)y=-x-1设P点为(x0,y0)y0=-x0-1(-1=

如图,抛物线y=-x2+2x+3与x轴交于A、B两点,与y轴交于点C,点D为抛物线的顶点,点P为第一象限的抛物线上的一点

解题思路:本题的关键是证明△AEF∽△DEG,设E(1,a),由相似比得关于a的方程,可得E的坐标,再求出AE的解析式,最后与抛物线的解析式联立方程组即可。解题过程:

二次函数压轴如图,已知抛物线y=-x2+2x+3与x轴交于A、B两点,与y轴交于点C.(2)连接AC,在抛物线对称轴上是

我给你说方法存在不存在你计算一下把点c的坐标求出来计算出ac的长再把点p坐标设出来然后分别计算pc和ap的距离在用勾股定理计算是不是满足公式满足存在反之不存在《计算p坐标有个技巧别忘了就是设p坐标横坐

抛物线y=-x2+2x+3与x轴交于A、B两点,且点A在x轴的负半轴上,抛物线与y轴交于点C,抛物线的顶点为M.&nbs

(7)y=-x2+2x+3A(-1,0)B(3,0)C(0,3)抛物线的对称轴是x=1设G(1,Y)C与对称轴垂直,可得平行四边形的一边,则存在G(1,3)把B点向右平移一个单位,得H(4.0)可以保

抛物线Y=-X2+2X+3与X轴交于A.B两点,且点A在X轴的负半轴上,点B在X轴的正半轴上,抛物线与Y轴交与点C,抛物

因为y=-x^2+2x+3=-(x-3)(x+1)=-(x-1)^2+4,所以A(-1,0),B(3,0),C(0,3),M(1,4).设点G为(1,b),题设知道四边形BCGH为平行四边形,那么BC

直线y=kx-k+2与抛物线y=1/4x2-1/2x+5/4交于A,B两 点,抛物线的对称轴与x轴交于点Q.(3)对于任

(3)存在定直线与以AB为直径的圆相切,此直线即x轴,解析式是y=0.理由如下:交点A(x1,y1)、B(x2,y2)的坐标符合方程组:y=kx−k+2y=14x2−12x+5

如图,抛物线y=x2-2x-3与x轴交A.B两点,与y轴交于C点,在抛物线上找一点P,使S三角形ABC=S三角形BCP,

抛物线y=x2-2x-3与x轴交A.B两点,与y轴交于C点,在抛物线上找一点P,使S三角形ABC=S三角形BCP,求P坐y=x^2-2x-3y=0两式联立,解得x1=3,x2=-1即A(-1,0)B(

已知y=x2+4x+3交x轴于AB两点,交y轴于点C,抛物线的对称轴交x轴于点E连接AC,交抛物线的对称轴于点D

(1)对称轴:直线x=-42×1=-2,令y=0,则x2+4x+3=0,解得x1=-1,x2=-3,所以,A(-3,0);(2)存在.令x=0,则y=3,所以,点C(0,3),∴直线AC的解析式为y=

已知:抛物线y=x2+5x+m与x轴交于ab两点,p是抛物线顶点

抛物线定点p(-5/2,m-25/4)a+b=-5ab=m(a-b)²=(a+b)²-4ab=25-4m>0m

如图,抛物线L1:y=-x2-2x+3交x轴于A,B两点,交y轴于M点.将抛物线L1向右

L2:y=-(x+1)(x-3)=-x²+2x+3P(x0,y0)y0=-x0²-2x0+3P关于原点的对称点Q(x,y)x=-x0y=-y0-y=-x²+2x+3y=x

抛物线y=x2-2x+k与x轴交于A、B两点,与y轴交于C(0,-3).在抛物线上求点Q的坐标,

初三啊,这个题目有点儿难解,如果学了高中部分知识就好了.首先,将点C带入方程,解出k=-3,然后得出抛物线方程.根据题目跟别求出点A(-1,0)点B(3,0)点C(0,-3)然后求出BC中点M(1.5