抛物线y=x^2-mx m-2与x轴公共点的情况是

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 05:02:12
抛物线y=x^2-mx m-2与x轴公共点的情况是
抛物线y=x的平方-3x-2与x轴交点坐标是

x的平方-3x-2=0x=3±√(3²+4×2)/2=(3±√17)/2;∴抛物线y=x的平方-3x-2与x轴交点坐标是:[(3+√17)/2,0];[(3-√17)/2,0];再问:能不能

如图,抛物线y=x平方-2x-3,抛物线与x轴交予A,B两点A在左

y=x^2-2x-3=(x+1)(x-3)=0所以,A点坐标(-1,0),B点坐标(3,0)C点坐标:x=0是的y值即,C点坐标(0,-3)假设:P(x1,y1),当顶点P或G恰好落在Y轴上时,即有P

直线y=x与抛物线y=-2x的平方的交点是

根据题意有x=-2x^2解这个方程有x1=0,x2=-1/2所以对应的y1=0,y2=-1/2直线y=x与抛物线y=-2x的平方的交点是(0,0)(-1/2,-1/2)

已知抛物线y=-2(x-1)²+8 求 抛物线与y轴交点坐标 抛物线与x轴的两个交点间的距离

已知抛物线y=-2(x-1)²+8求抛物线与y轴交点坐标抛物线与x轴的两个交点间的距离抛物线与y轴交点的横坐标为x=0,代入已知抛物线y=-2(x-1)²+8得Y=-2(0-1)&

一条抛物线的形状 ,开口方向与抛物线y=1/2x相同,对称轴及顶点与抛物线y=3(x-2)相同,求其解析式

答:抛物线开口和形状相同,则a值相同y=ax^2+bx+c的开口形状和方向与y=(1/2)x^2的相同则有:a=1/2y=3(x-2)^2的对称轴x=2,顶点(2,0)则对称轴x=-b/(2a)=2所

抛物线y=2x

∵抛物线是二次函数的图象,∴m2-4m-3=2,解得m=-1或m=5,又顶点在x轴下方,∴m-5<0,即m<5,∴m=-1.

已知直线y=x-2与抛物线y

将y=x-2与y²=2x联立消去x得:(x-2)²=2x,x²-6x+4=0,设A(x1,y1),B(x2,y2).则x1+x2=6,x1x2=4.则x1x2+y1y2=

已知抛物线C1:y=x²-2x-3,抛物线C2与抛物线C1关于X轴对称,若

由抛物线C1可得出C1经过点(1,-4)(-1,0)(3,0)因为C1与C2关于x轴对称所以C2讲过点(1,4)(-1,0)(3,0)所以C2为y=-x²+2x+3因为直线y=x+b(b>0

一条抛物线的形状、开口方向与抛物线y=2X²相同,对称轴和抛物线y=(X-2)²相同,且顶点纵坐标为

∵y=(x-2)²的对称轴为x=2∴此抛物线的解析式为y=2(x-2)²+b又顶点纵坐标为0∴y=2(x-2)²=2x²-8x+8

与抛物线y=-x^2-2x+3关于x轴对称的抛物线的解析式为_____.

关于x轴对称,则横坐标不变,纵坐标是相反数所以-y=-x^2-2x+3即y=x^2+2x-3

抛物线Y=X的平方-2X+1的图象与X轴交点有

△=b²-4ac=4-4=0所以与X轴只有一个交点

抛物线y=3x²-x-2 求过抛物线与x轴交点的切线方程 用韦达定理

令y=3x^2-x-2=0解得xA=-2/3,xB=1则抛物线与x轴的交点为A(-2/3,0)和B(1,0)(1)过点A的切线设为y=kx+b联立方程可得3x^2-x-2=kx+b整理得:3x^2-(

若关于x的方程mxm-2-m+3=0是一元一次方程,则这个方程的解是(  )

由一元一次方程的特点得m-2=1,即m=3,则这个方程是3x=0,解得:x=0.故选A.

抛物线y=-5x^2+4x+7与y轴的交点坐标

抛物线y=-5x^2+4x+7与y轴的交点坐标x=0时y=7抛物线y=-5x^2+4x+7与y轴的交点坐标是(0,7)

抛物线与x轴的两个交点为(-1,0),(3,0),其形状与抛物线y=-2X²相同,求抛物线解析式

设抛物线为Y=-2X平方+bx+c,因为过已知2点,所以-2-b+c=0,且-18+b+c=0,所以b=8,c=10,所以抛物线为y=-2x平方+8x+10

已知抛物线c1:y=2/3x+16/3x+8与抛物线c2关于y轴对称,求抛物线c2的解析式

控制开口大小不变,即二次项系数不变;对称轴关于y轴对称,所以将一次项系数符号变为负,顶点位置对称,所以最低点y轴坐标相同

抛物线Y=X方-X-2与X轴的交点坐标为

有抛物线的交点式Y=A(X-X1)(X-X2),与X轴的交点坐标是(X1,0);(X2,0)把Y=X²-X-2化成交点式是Y=(X+1)(X-2)那么抛物线与X轴的交点坐标是(-1,0);(