抛物线y=x²-2x 4 (0,8)三角形周长最小

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 06:34:34
抛物线y=x²-2x 4 (0,8)三角形周长最小
已知x2+x+1=0 求x4+1/x4

x²+1=-x两边平方x⁴+2x²+1=x²x⁴+1=-x²两边平方x^8+2x⁴+1=x⁴x^8+1=-x&#

已知抛物线y=-2(x-1)²+8 求 抛物线与y轴交点坐标 抛物线与x轴的两个交点间的距离

已知抛物线y=-2(x-1)²+8求抛物线与y轴交点坐标抛物线与x轴的两个交点间的距离抛物线与y轴交点的横坐标为x=0,代入已知抛物线y=-2(x-1)²+8得Y=-2(0-1)&

抛物线y^2=2x关于直线x-y+1=0对称的抛物线方程是什么?

设P(x,y)是抛物线上的任意一点,P‘(x’,y‘)是其关于直线x-y+1=0的对称点则(y-y')/(x-x')=-1且(x+x')-(y+y')+2=0解得2y'=x+2x'+1=y再联立y^2

抛物线y^2=8x的准线为l,点q在圆c:x^2+y^2++6x+8y+21=0上,设抛物线上任意一点p到直线l的距离为

圆C:(x+3)^2+(y+4)^2=4即C坐标是(-3,-4),半径r=2根据抛物线的定义得到m=PF,且F坐标是(2,0),连接FC与抛物线的交点即是P,与圆的交点即是Q那么有m+|PQ|的最小值

已知抛物线y=2x*2+1,求抛物线上哪一点的切线垂直于直线x+8y-3=0

设该点的坐标为(a,b),所在直线为:y=kx+B,则:直线y=kx+B与x+8y-3=0垂直,所以:k*(-1/8)=-1,即:k=8又∵b=2a^2+1b=ak+B则:8a+B=2a^2+1,因为

抛物线y=2x

∵抛物线是二次函数的图象,∴m2-4m-3=2,解得m=-1或m=5,又顶点在x轴下方,∴m-5<0,即m<5,∴m=-1.

已知直线y=x-2与抛物线y

将y=x-2与y²=2x联立消去x得:(x-2)²=2x,x²-6x+4=0,设A(x1,y1),B(x2,y2).则x1+x2=6,x1x2=4.则x1x2+y1y2=

已知直线l:y=2(x-8),抛物线y^2=ax(a>0),(1)l过抛物线的焦点时,求a

解析,y²=ax,焦点坐标为(a/4,0)直线y=2(x-8),过焦点,故,a=32.【2】设B(x1,y1),C(x2,y2).另设y²=32x的焦点为O(8,0)焦点O又是△A

已知x+y+z=0,求x4+y4+z4-2x2y-2y2z2-2z2x2的值

(x2+z2)(x2+y2)(y2+z2)=(x+y)2-2xy×(x+z)2-2xz×(y+z)2-2yz--之后不清楚了

已知抛物线y=-2(x+1)2+8,

①∵令x=0,y=-2(0+1)2+8=6,∴抛物线与y轴的交点坐标为(0,6);②∵令y=0,则-2(x+1)2+8=0,解得x1=1,x2=-3,∴抛物线与x轴的交点坐标为:(1,0),(-3,0

已知抛物线c1:y=2/3x+16/3x+8与抛物线c2关于y轴对称,求抛物线c2的解析式

控制开口大小不变,即二次项系数不变;对称轴关于y轴对称,所以将一次项系数符号变为负,顶点位置对称,所以最低点y轴坐标相同

已知直线y=k(x-2)(k>0)与抛物线y平方=8x相交于A,B亮点,F为抛物线的焦点

由抛物线C:y²=8x易知F(2,0)y=k(x-2)化为x=y/k+2得出y²-8y/k-16=0(也可不化直接与y²=8x联立)设A(x1,y1)B(x2,y2)则y

已知抛物线y=ax2+6x-8与直线y=-3x相交于点A(1,0)求抛物线的解析式

将(1,0)代入到抛物线y=ax²+6x-8中,得,a+6-8=0,解得a=2所以抛物线y=2x²+6x-8

函数y=2^(x+2)-3X4^x在【-1,0】上的最大值和最小值为多少?

y=4*2^x-3*(2^x)²x∈[-1,0]令2^x=t,则t∈[1/2,1]y=-3t²+4t,t∈[1/2,1]画图,函数y=-3t²+4t的图象是开口向下,对称

已知抛物线的焦点是圆x^2+y^2+4y=0的圆心,求抛物线的方程

x^2+y^2+4y=0x^2+(y+2)^2=4圆心为(0,-2)则抛物线焦点为(0,-2)位于y轴负半轴.则抛物线的方程为:x^2=-8y在抛物线x2=-2py中,焦点是(0,-p/2),准线的方

已知抛物线y=x^2-2x-8,将这条抛物线沿x轴平移使其通过原点?

令抛物线y=x^2-2x-8=0,得x=4或x=-2(即求抛物线y=x^2-2x-8与x轴的交点的横坐标.)所以把抛物线y=x^2-2x-8沿x轴向左平移4个单位或向右左平移2个单位,使抛物线y=x^

已知抛物线C:y=x²-2x+4和直线l:y=-2x+8,直线y=kx(k>0)与抛物线C交于……

1、直线L与抛物线的交点A,B满足方程y=x^2-2x+4=kx化简得:x^2-(2+k)x+4=0而A,B两点的横坐标就是此方程的两个解.即OA1=x1OB1=x2OA1*OB1=x1*x2=4OA