抛物线y=x²-4与x轴交于点B,C两点
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 08:17:02
由y=x²-x+m,知对称轴为x=1/2.A在y轴上,所以A(0,m)AB关于x=1/2对称,所以B(1,m)S△AOB=4,所以1/2*1*m=4所以m=8
选D若四边形ACBD是正方形那么就有CD=ABCO=AO=c即可以得到抛物线与x轴的交点为(c,0),(-c,0)将点代入y1=ax的平方+c可得到ac²﹢c=0ac﹙c﹢1﹚=0ac≠0∴
1、交不交于A点,感觉没有意义啊y=x+2,x=0所以y=2,A(0,2)1)y=x+2,2)y=-x^2+3x+5结合两个方程,把1)代入到2)中去求出x1=-1,x2=3,再分别代入1)得y1=1
解,(1)y=1/2x-1与x轴交于点A,得A(2,0),又点C为抛物线的顶点,则可知抛物线与x轴的另一交点E(-2,0),可解出抛物线为y=x^2-4,到顶点D(0,-4)(2)由点O到直线AB的距
与点C成轴对称的应为F点,则F(2,3)过点F作FH⊥BQ,设垂足为H(m,n),由BH=FH得 (m-3)^2+n^2=(m-2)^2+(n-3)^2,化简得m=3n-2, 因为∠BHF=9
令y=0,的x=4或-2(舍去),故A(4,0)同理令x=0得y=4,故B(0,4).则直线ABx+y-4=0.(2)由题可得,要使直线AB与该正方形相加,只需直线AB与线段PQ有交点,(lz学过线性
(1).y=-x²+2x+3=-(x²-2x)+3=-[(x-1)²-1]+3=-(x-1)²+4对称轴:x=1;顶点P(1,4);C(0,3);A(-1,0)
(1)二者的底相同(DE),只需其上的高相等即可,即CP与DE平行。CP的斜率也是2,C(0,-4),CP的方程为y=2x-4(点斜式)y=2x-4=x²+3x-4x=-1(另一解x=0为点
2是1问的答案3是2问的答案此题原题是4个问很高兴为您解答,【学习宝典】团队为您答题.请点击下面的【选为满意回答】按钮,
1、mx2-(3m+4/3)x+4=0利用求根公式得出x=[3m+4/3加减√(3m-4/3)^2]/(2m)当3m-4/3>0时A(3,0)B(4/(3m),0)C(0,4)当3m-4/3
存在.直线l:y=k(x+1)(k≠0)联立y=k(x+1),y²=4x.消去x得.y²-4y/k+4=0Δ=16/k²-16>0.解得k²
题错了再问:哦,是过点F的直线L与抛物线C交于AB两点再答:[[[1]]]|AB|=4此时,AB⊥x轴,该直线斜率k不存在.[[[[2]]]]0<|k|≤(√3)/3再问:过程啊
由已知可知点C的坐标用余弦定理求∠ACB大小∠ACB=∠APB通过点A,B的坐标知道AB的长度,又知道∠P,△APB又是等腰三角形,AP=BP再对△APB用余弦定理就知道AP,BP的长度,然后就能求出
抛物线y=a(x-1)^2+4与x轴交于A(1-√(-4/a),0),B(1+√(-4/a),0),顶点D(1,4),对称轴与x轴交于E(1,0),由AB=DE得2√(-4/a)=4,∴-4/a=4,
1)当K=2时,假设存在点M(a,2a),那么MN=MQ=|2-a|AO//MQ,因此四边形AOMQ是梯形,面积等于(MQ+AO)*M到y轴的距离/2=(3+|a|)*|a|/2正方形MNPQ的面积=
A(4,0)B(-2,0)C(0,4)先求得BC方程:y=2x+4则作BC中垂线EG交BC于E,得点E为(-1,2),EG⊥BC,所以斜率相乘得-1,则EG斜率为-1/2将E点代入得EG方程,y=-1
14=0+m-1m=52y=-x²+4y=0x=±2(2,0)(-2,0)3){x|-2再问:恩,谢谢
(1)点E的横坐标为2,带入y=x-1得E(2,1)tan角AOD=3/2,因此设D(2m,3m)将D点坐标带入y=x-1得D(-2,-3)将点D、E的坐标带入y=ax^2+bx+3联立方程解得:a=
http://wenku.baidu.com/view/5f1fa91e650e52ea5518985a.html