抛物线y=x²-4与x轴交于点B,C两点

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 08:17:02
抛物线y=x²-4与x轴交于点B,C两点
已知二次函数y=x²-x+m,若抛物线与y轴交于点A,作AB平行于x轴交抛物线于另一点B,当S△AOB=4时,

由y=x²-x+m,知对称轴为x=1/2.A在y轴上,所以A(0,m)AB关于x=1/2对称,所以B(1,m)S△AOB=4,所以1/2*1*m=4所以m=8

已知抛物线y1=ax的平方+c与x轴交于点A,B,与y轴交于点C.抛物线y2与抛物线y1关于x轴对称,与y轴交于点D,若

选D若四边形ACBD是正方形那么就有CD=ABCO=AO=c即可以得到抛物线与x轴的交点为(c,0),(-c,0)将点代入y1=ax的平方+c可得到ac²﹢c=0ac﹙c﹢1﹚=0ac≠0∴

已知直线y=x+2与y轴交于点A,与抛物线y=-x的平方+3x+5交于bc两点

1、交不交于A点,感觉没有意义啊y=x+2,x=0所以y=2,A(0,2)1)y=x+2,2)y=-x^2+3x+5结合两个方程,把1)代入到2)中去求出x1=-1,x2=3,再分别代入1)得y1=1

向函数高手求救压轴题!已知:y=1/2x+c与x轴交于点A,与y轴交于点B,抛物线y=ax^2-bx+4c与直线AB交于

解,(1)y=1/2x-1与x轴交于点A,得A(2,0),又点C为抛物线的顶点,则可知抛物线与x轴的另一交点E(-2,0),可解出抛物线为y=x^2-4,到顶点D(0,-4)(2)由点O到直线AB的距

抛物线y=ax2+bx+c的顶点为P,对称轴直线x=1于x轴交于点D,抛物线与x轴交于点D抛物线交于A.B两点A(-1,

与点C成轴对称的应为F点,则F(2,3)过点F作FH⊥BQ,设垂足为H(m,n),由BH=FH得   (m-3)^2+n^2=(m-2)^2+(n-3)^2,化简得m=3n-2,   因为∠BHF=9

如图,已知抛物线y=-1/2x平方+x+4交x轴的正半轴与点A,交y轴于点B

令y=0,的x=4或-2(舍去),故A(4,0)同理令x=0得y=4,故B(0,4).则直线ABx+y-4=0.(2)由题可得,要使直线AB与该正方形相加,只需直线AB与线段PQ有交点,(lz学过线性

如图 抛物线y=-x2+2x+3与x轴交于A,B 两点,与 y轴交于点C,对称轴与抛物线交于点P,与直线BC 交于点M,

(1).y=-x²+2x+3=-(x²-2x)+3=-[(x-1)²-1]+3=-(x-1)²+4对称轴:x=1;顶点P(1,4);C(0,3);A(-1,0)

如图,已知抛物线y=x²+3x-4与x轴交于A,B两点,与y轴交于C点,直线y=2x+2与抛物线交于

(1)二者的底相同(DE),只需其上的高相等即可,即CP与DE平行。CP的斜率也是2,C(0,-4),CP的方程为y=2x-4(点斜式)y=2x-4=x²+3x-4x=-1(另一解x=0为点

在平面直角坐标系中,抛物线y=1/18x^2-4/9x-10 与x轴交于点A与y轴交于点B,过点B作X轴的平行线BC,交

2是1问的答案3是2问的答案此题原题是4个问很高兴为您解答,【学习宝典】团队为您答题.请点击下面的【选为满意回答】按钮,

已知抛物线y=mx2-(3m+4/3)x+4与x轴交于点A,B,与y轴交于点C.

1、mx2-(3m+4/3)x+4=0利用求根公式得出x=[3m+4/3加减√(3m-4/3)^2]/(2m)当3m-4/3>0时A(3,0)B(4/(3m),0)C(0,4)当3m-4/3

已知抛物线C:y²=4x的准线与x轴交于m点,F为抛物线焦点,过点M斜率为k的直线l与抛物线交于点A.B

存在.直线l:y=k(x+1)(k≠0)联立y=k(x+1),y²=4x.消去x得.y²-4y/k+4=0Δ=16/k²-16>0.解得k²

已知抛物线C:y²=4x的准线与x轴交于m点,F为抛物线焦点,过点M斜率为k的直线l与抛物线交于点A.B两点

题错了再问:哦,是过点F的直线L与抛物线C交于AB两点再答:[[[1]]]|AB|=4此时,AB⊥x轴,该直线斜率k不存在.[[[[2]]]]0<|k|≤(√3)/3再问:过程啊

已知抛物线y=x^2-4x+3与x轴交于点AB(A左B右)与y轴交于C点P是抛物线对称轴上一点,且角APB=角ACB,求

由已知可知点C的坐标用余弦定理求∠ACB大小∠ACB=∠APB通过点A,B的坐标知道AB的长度,又知道∠P,△APB又是等腰三角形,AP=BP再对△APB用余弦定理就知道AP,BP的长度,然后就能求出

如图抛物线y=a(x-1)2+4与x轴交于AB两点与y轴交于点CD是抛物线的顶点抛物线的对称轴与X轴交于eAB=DE解析

抛物线y=a(x-1)^2+4与x轴交于A(1-√(-4/a),0),B(1+√(-4/a),0),顶点D(1,4),对称轴与x轴交于E(1,0),由AB=DE得2√(-4/a)=4,∴-4/a=4,

如图,已知抛物线y=-x2+4x+3与y轴交与点A,与x轴正半轴交与点D,顶点为点B,抛物线的对称轴交x轴于点c,M是

1)当K=2时,假设存在点M(a,2a),那么MN=MQ=|2-a|AO//MQ,因此四边形AOMQ是梯形,面积等于(MQ+AO)*M到y轴的距离/2=(3+|a|)*|a|/2正方形MNPQ的面积=

急求】如图,已知抛物线y=-0.5x²+x+4与y轴交于点C,与x轴交于A,B

A(4,0)B(-2,0)C(0,4)先求得BC方程:y=2x+4则作BC中垂线EG交BC于E,得点E为(-1,2),EG⊥BC,所以斜率相乘得-1,则EG斜率为-1/2将E点代入得EG方程,y=-1

抛物线y=-x²+(m-1)与y轴交于(0,4)点.

14=0+m-1m=52y=-x²+4y=0x=±2(2,0)(-2,0)3){x|-2再问:恩,谢谢

一道关于函数的证明题抛物线y=ax2+bx+3与x轴交于点A、B与y轴交于点C,直线y=x-1与抛物线交于点D、E,已知

(1)点E的横坐标为2,带入y=x-1得E(2,1)tan角AOD=3/2,因此设D(2m,3m)将D点坐标带入y=x-1得D(-2,-3)将点D、E的坐标带入y=ax^2+bx+3联立方程解得:a=

已知抛物线y=-1/3x²+1/3x+4,与x轴交于点A,C,与Y轴交于点B

http://wenku.baidu.com/view/5f1fa91e650e52ea5518985a.html