抛物线y^2=2px,倾斜角为,则AF=

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 00:03:41
抛物线y^2=2px,倾斜角为,则AF=
过抛物线y^2=2Px(p>0)的焦点F作倾斜角为π/4的直线,交抛物线于A,B两点,点A在x轴的上方,求|AF|/|B

直线为y=x-p/2,联立y=x-p/2,y^2=2Px解得xA=3p/2+√2p,xB=3p/2-√2p|AF|/|BF|=(xA+p/2)/(xB+p/2)=(2p+√2p)/(2p-√2p)=3

抛物线y^2=2px的焦点为F,一倾斜角为π/4直线过焦点F交抛物线于A,B两点,且|AF|>|BF|,求|AF|/|B

过点A、B分别作直线垂直于准线,垂足分别为C、D,过点B作BH垂直AC,垂足为H.为方便起见,设AF=m,BF=n.则:DF=n,AC=m,所以AH=m-n,AB=m+n.由于三角形ABH为等腰直角三

1过抛物线y^2=2px(p>0)的焦点作倾斜角为135度的直线,交抛物线于A,B两点,O为原点,则三角形OAB的面积等

1.由于S△OAB可以分成x轴上下两部分来求和,公共底为OF(F焦点),因此只需求A(x1,y1)B(x2,y2)中的|y1-y2|直线斜率为-1,设直线方程为y=-(x-p/2)得x=p/2-y,代

过定点P(-1,-2)作倾斜角为45度的直线交抛物线y^2=2px于A,B两点,若PA,AB,PB成等比数列,求抛物线的

设直线为y=x+b,代入P点解得,直线为y=x-1.分别设A(x1,y1)B(x2,y2)由直线和抛物线方程得知:x1+x2=2+2px1×x2=1y1+y2=2py1×y2=-2p由于PA×PB=A

曲线题..求详解直线L过抛物线y^2=2px(p>0)的焦点F且倾斜角为60度,它与抛物线交A、B两点,|AF|=4.求

设B(x1,y1)C(x2,y2)过定点(-2,-4)作倾斜角为45°的直线l则直线方程为y=x-2代入y2=2pxx^2-(2p+4)x+4=0x1+x2=2p+4x1*x2=4ABBCAC成等比数

过抛物线y^2=2px(p>0)的焦点F斜率为K的直线交抛物线于A,B两点,若直线AB的倾斜角为锐角,|AF|=2|BF

过抛物线y^2=2px(p>0)的焦点F(p/2,0)、斜率为k(k>0)的直线方程为y=k(x-p/2),设该直线与抛物线的交点为A(u,k(u-p/2))、B(v,k(v-p/2)),于是u、v应

(1/2)已知倾斜角为X的直线过抛物线y^2=2px(x>0)的焦点F,与抛物线交于A.B二点.求证.|AB|=2p/s

将直线y=tanα*(x-p/2)代入y^2=2px(tanα)^2x^2-[(tanα)^2+2]px+(ptanα)^2/4=0|AB|=|AF|+|BF|=x1+x2+p=2p[1+1/(tan

经过抛物线y^2=2px(p>0)外一点A(-2,-4)且倾斜角为45度的直线L交抛物线于M1,M2两点

直线方程为x=y+2y^2=2p(y+2)y^2-2py-4p=0y1+y2=2p,y1y2=-4p(y1+4)/(y2-y1)=(y2-y1)/(y2+4)(y1+4)(y2+4)=(y2-y1)^

过抛物线y^2=2px的焦点F作倾斜角为45°的直线,交抛物线于A,B两点

AB的直线方程为y=x-p/2,与抛物线方程联立得x^2-3px+p^2/4=0,所以x1+x2=3p,所以AB=x1+p/2+x2+p/2=4p=8,所以p=2

过抛物线y^2=2px(p>0)的焦点F做倾斜角为α的直线与抛物线交于A,B两点,求证:|AB|=2p/(sinα)^2

y^2=4x焦点F(p/2,0)准线x=-p/2设焦点弦:y=tanα*(x-p/2)(α≠π/2)y=tanα*(x-p/2)代入y^2=2px(tanα)^2x^2-[(tanα)^2+2]px+

7.过抛物线y*2=2px(p>0)的焦点F作倾斜角为45度的直线交抛物线与A,B两点,若线段AB的长为8,求抛物线的标

设A(x1,y1),B(x2,y2)抛物线y²=2px的焦点为(p/2,0)则AB的方程为y=x-p/2联立得(x-p/2)²=2px,即4x²-12px+p²

过抛物线y^2=2px(p>0)的焦点F作倾斜角为3π/4的直线,交抛物线于A、B两点,求证|AB|=4p

设A(x1,y1),B(x2,y2).过A、B分别作准线的垂线,交准线于点C,D.∵过F(p/2,0)的的直线的斜率为-1,∴该直线方程:y=-x+p/2,代入y^2=2px,整理得:x^2-3px+

抛物线Y2=2px,过其焦点作倾斜角为60度的直线交抛物线于AB,且|AB|长为4,求抛物线方程!

对于直线与圆锥曲线相交所得的弦长问题,基本上都是利用弦长公式,通过待定系数来求解的.由于本题的圆锥曲线比较特殊(抛物线,其离心率为1;角度为60°,是特殊角),还存在另外两种方法.1、利用弦长公式,即

点A(2,8)在抛物线y^2=2px上,直线l的倾斜角为45度且过抛物线的焦点,与抛物线交于B,C两点.

∵点A(2,8)在抛物线y²=2px上∴64=4pp=16抛物线方程为y²=32x其焦点为(8,0)∵直线l的倾斜角为45º,且过抛物线焦点∴直线l的方程y=x-8把直线