抛物线y^2=2与直线y=x-4所围成的图形
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 09:44:17
∵由题意得y=2x+2y=x2+3x,解得x=−2y=−2或x=1y=4,∴直线y=2x+2与抛物线y=x2+3x的交点坐标为(-2,-2),(1,4).故答案为:(-2,-2),(1,4).
联立两函数的解析式有:y=x+2y=x2+2x,解方程组,得x=1y=3,x=−2y=0;则直线y=x+2与抛物线y=x2+2x的交点坐标是(1,3),(-2,0).
把直线y=2x-1代入抛物线方程得2x-1=x^2-3x+3x^2-5x+4=0(x-4)(x-1)=0x=4x=1y=2*4-1=7y=2*1-1=1所以交点是(4,7)与(1,1)
x(x-2)=xx=0或x-2=1x=0或x=3所以面积=∫(0,3)[x-x(x-2)]dx=∫(0,3)[-x²+3x]dx=[-x³/3+3x²/2]|(0,3)=
3x-2=x^2-x-6x^2-4x-4=0x=2+根号2,y=4+3根号2x=2-根号2,y=4-3根号2
根据题意有x=-2x^2解这个方程有x1=0,x2=-1/2所以对应的y1=0,y2=-1/2直线y=x与抛物线y=-2x的平方的交点是(0,0)(-1/2,-1/2)
第二问:存在.将直线AB向右上方平移到与抛物线相切,切点M与AB的距离最大,此时三角形MAB面积最大.设切线的方程为y=-x+a,由于相切,它和y=-x平方+4组成的方程组只能有一组解,即方程-x+a
y=2x+1y=x²-3x+1联立求解得:.
将y=x-2与y²=2x联立消去x得:(x-2)²=2x,x²-6x+4=0,设A(x1,y1),B(x2,y2).则x1+x2=6,x1x2=4.则x1x2+y1y2=
(1)抛物线y=2x²-3x+m直线y=-3x+1带入抛物线,移向2x²+m-1=0x²=1-m/2有两交点所以1-m/2>0即可m
1.先求抛物线与直线的交点y^2=2xy=4-x(4-x)^2=2xx^2-10x+16=0x1=2y1=4-2=2点(2,2)x2=8y2=4-8=-4点(8,-4)2.再求积分y积分范围从-4到2
x²+7x+3=2x+9,得x1=-6,x2=1,代入任一曲线方程,得交点坐标(-6,-3)(1,11)再问:如何解x²+7x+3=2x+9?再答:移项x²+5x-6=0
利用积分求解连立两个方程2x=x^2-8x+16得到交点是x=2和x=8对应y是-2和4因为曲线可表示成x=y^2/2与x=y+4积分∫y+4-y^2/2dy积分区间[-2,4]=y^2/2+4y-y
在平面坐标系中画出此图像.然后将X轴改成Y轴,将Y轴改成X轴.此时,抛物线的解析式变为y=(x^2)/2,直线方程变为y=x+4.那就变成了比较常见的求曲边梯形的题目了.先求抛物线与直线的交点,向此时
先求交点x=y^2/2=y+4y^2-2y-8=0(y-4)(y+2)=0y=4,y=-2x=y+4所以交点(8,4),(2,-2)围成的图形有一部分在x轴下方其中0≤x≤2,x轴下方的抛物线是y=-
y=x^2-x-2y=2x-1x^2-x-2=2x-1x^2-3x-1=0(x-3/2)^2=9/4+1=13/4x=3/2(+/-)根号13/2y=2(+/-)根号13即交点坐标是(3/2+根号13
(1)由y=2x²,y=4x消y得x=0或x=2故面积s=∫(0--2)4x-2x²dx=2x²-(2/3)x³|(0--2)=8/3(2)设直线方程为y=4x
y=-x^2与y=-4围起来的面积
你好,很高兴为您作答这道题就是联立两个方程啊得:2x平方+5x-2=52x平方+5x-7=0(2x+7)(x-1)=0解得:x=-7/2或1所以抛物线与直线的交点坐标为(-7/2,5)和(1,5)若有
y=x²与y=2x的交点是(0,0)、(2,4),则围成是面积是S=∫(2x-x²)dx【区间是[0,2]】=4/3