抛物线y平方=2x与过焦点的直线交于

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 13:45:54
抛物线y平方=2x与过焦点的直线交于
给定抛物线C:Y平方=4X,F是C的焦点,过点给定抛物线C:Y平方=4X,F是C的焦点,过点F的直线l与C相交于A B

用极坐标解抛物线方程:ρ=2/(1-cosθ)设|AF|=2/(1-cosα),α∈[0,2π)则|BF|=2/(1+cosα)|FB|/|AF|=(1-cosα)/(1+cosα)=-1+2/(1+

已知抛物线y平方=8x的焦点为F,直线y=k(x+2)与抛物线交于A,B两点

焦点为(2,0)、联解Y平方=8X、Y=k(X+2)两个方程、得K平方(X+2)的平方=8X得到一个关于X的二元一次方程.(含K平方)当方程式有解时.利用维达定理X1+X2+4=Y1+Y2Y1=K(X

设坐标原点为0,抛物线y平方=2x与过焦点的直线交于A,B两点,则向量OA乘以向量OB=?

特殊值法,不妨设AB垂直于X轴且过焦点,若A在X轴上方,显然A(1/2,1),B(1/2,-1)于是结果为向量OA.OB=1/2*1/2-1=-3/4.

已知过抛物线y的平方=4x的焦点F的直线交该抛物线于A,B两点,|AF|=2,则|BF|=?

焦点为(1,0)焦距为1所以都为2再问:焦点不是2,0吗?再答:不是,Y的平方=2PX焦点为(p,0)现在2P等于4所以要除4所以为(1,0)所有y的平方=aX焦点都为(a/4,0)再问:为什么都为2

已知抛物线y平方=8x,直线l过抛物线的焦点F,且倾斜角为45,直线l与抛物线交于CD两点,

设C(x1,y1)D(x2,y2)由题目可知:p=4那么焦点F(2,0)因为直线的倾斜角为45,所以斜率为1所以直线方程为:y=x-2带入抛物线方程中有:(x-2)^2=8x即是:x^2-12x+4=

已知过抛物线Y平方=2PX(X>0)的焦点的直线交抛物线于AB两点,且AB=5/2P,求AB方程

Y²=2PX[X>0]设过焦点的直线为:Y=k(X-P)则有:k²(X-P)²=2PX→k²X²-2Pk²X+k²P²=

已知椭圆的中心在原点,其左焦点F1与抛物线y的平方=-4x的焦点重合,过F1的直线L与椭圆交于A,B两点,与抛物线交于C

1、由于抛物线y^2=-4x的焦点坐标为(-1,0),故c=1(对于椭圆而言)当直线L与x轴垂直时,|CD|:|AB|=2√2此时|CD|=4,故|AB|=√2又|AB|=2b^2/a=√2a^2-b

已知椭圆的一个焦点与抛物线y²=8x的焦点重合,椭圆的离心率为2√5/5,过椭圆的右焦点F作与坐标轴不垂直的直

(一)由题设,可设椭圆的方程为(x²/a²)+(y²/b²)=1.(a>b>0).易知,抛物线y²=8x的焦点F(2,0).故可知c=2,又e=c/a

抛物线Y=2x平方的焦点坐标是

x平方=y/22p=1/2p/2=1/8开口向上所以焦点是(0,1/8)

设抛物线y^2=2x的焦点为F,过点M(√ ̄3,0)的直线与抛物线相交与A.B两点

数据有没有给错?我没算出来.不过方法可以给你的你设AB所在的线为Y=AX+B带入题中给的(根号3,0)这个点我先设为Q因为FB等于2根据“抛物线上的一点到焦点的距离等于到准线的距离”所以B到准线等于2

若椭圆a平方分之x平方+b平方分之y平方=1过抛物线y平方=8x的焦点,且与双曲线x平方-y平方=1有相同的焦点,则该椭

x²/4+y²/2=1再问:过程是怎样的再答:因为椭圆过抛物线的焦点(2,0)且焦点在x轴上。所以a=2;因为与双曲线有相同焦点(1.0)(-1,0)所以c²=2;所以b

过抛物线 Y平方=4X 焦点弦的中点轨迹方程是?

化简参数方程就行了,消去k:x=(k^2+2)/k^2,y=2/kk=2/yx=[(2/y)^2+2]/(2/y)^2=(4+2y^2)/4=1+y^2/2y^2=2(x-1),也是抛物线.

已知直线y=k(x-2)(k>0)与抛物线y平方=8x相交于A,B亮点,F为抛物线的焦点

由抛物线C:y²=8x易知F(2,0)y=k(x-2)化为x=y/k+2得出y²-8y/k-16=0(也可不化直接与y²=8x联立)设A(x1,y1)B(x2,y2)则y

一条直线过抛物线Y的平方=4x 的焦点,交与A和B两点,求AB中点到y轴距离?

AB中点到y轴距离=中点坐标的横坐标设这条直线为y=k(x-1)与y²=4x联立,得:k²x²-2x(k²-2)+k²=0x1+x2=-b/a=-2+

抛物线Y=4x平方的焦点坐标

x²=(1/4)y2p=1/4p/2=1/16所以是(0,1/16)

求y=4x的平方的抛物线焦点

x²=y/42p=1/4p/2=1/16所以焦点是(0,1/16)

已知直线经过抛物线y的平方等于4x的焦点F,且与抛物线相交与A,B两点,|AF|=2,则|BF|=?

抛物线焦点F(1,0),准线为x=-1,设A(a,b)根据抛物线上点到焦点和准线距离相等知|AF|=a-(-1)=2,所以a=1,所以AF垂直于x轴,因此|BF|=|AF|=2

已知对称中心为坐标原点的椭圆C1与抛物线C2:x^2=4y有一个相同的焦点F1,直...

抛物线C2:x^2=4y的焦点F1坐标为F1(0,1),所以椭圆C1中,c=1,焦点在y轴上.又因为直线L:y=2x+m与抛物线C2只有一个公共点,所以x^2=4(2x+m)只有唯一解,所以:64+1