抛物线和y=ax-6
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 23:28:45
1.假设其中一个交点为(x,y)很明显.第一个的在该点斜率是2x-2第二个的在该点斜率是-2x+a那么因为在它们的一个交点处的切线互相垂直所以(2x-2)(-2x+a)=-1展开,得到4x^2-2(a
y=ax的平方+bx+c开口向下,∴a<0过A(0.1)和M(2,-3)∴1=0+0+c,c=1-3=4a+2b+1,2a+b=-2(1)如果抛物线的对称轴为直线x=-1,-b/(2a)=-1b=2a
假设存在P(x,y)抛物线的解析式为y=-1/2x^2+11/4x-3.所以A(3/2,0)B(4,0)C(0,-3)所以AC的直线方程为2x-y=3三角形ABC沿直线AC翻折,使点B与B'重合,联结
1)有题意得:c=-69a-12-6=-9解得a=1所以y=x²-4x-62)对称轴为x=2当x=2是y=-10所以顶点为(2,-10)3)由题意得Q(4-m,m)所以m2-4m-6=mm=
y=ax^2+bx+c和抛物线y=2x方-6x关于x轴对称∴a=-2,b=-(-6)=6,c=0所以解析式:y=-2x^2+6x
抛物线y=2x^2-6x关于y轴对称的抛物线为y=2(-x)^2-6(-x)=2x^2+6x,为所求.
(1)根据图示,由抛物线的对称性可知,抛物线的对称轴与x轴的交点坐标(1,0);(2)抛物线的对称轴是直线x=1.根据图示知,当x<1时,y随x的增大而减小,所以,当x1<x2<1时,y1>y2;
答:抛物线方程y=-ax^2+3ax+2=-a(x-3/2)^2+2+9a/4所以抛物线对称轴x=3/2,故点C一定在对称轴的右侧.令x=0,y=2,所以点A(0,2)令y=-ax^2+3ax+2=0
易得:C1的顶点坐标为(2,5),C2的顶点为关于P(2,5)成中心对称,∴C2的顶点坐标为(0,1)⑴BA=BC,则AC=AB=2√5,∴OC=√19,C(√19,0),设C1:y=a1x^2+1,
(2)将直线方程与抛物线方程联立,消去y:x²-4ax-4=0根据韦达定理:x1+x2=4a,x1x2=-4根据中点坐标公式P点坐标为((x1+x2)/2,(y1+y2)/2)y1+y2=a
直线y=ax+1恒过定点(0,1)该定点在抛物线内,所以不论a取何值(前提是a存在),都与抛物线有两交点.
从图中可以看出,抛物线的对称轴为:x=3因此,抛物线可以表示为:y=a(x-3)²+k将(1,0)、(4,2)代入上式:0=a(1-3)²+k4a+k=0.(1)2=a(4-3)&
直线y=(1/2)x与抛物线y=ax^2+b(a不等于零)交于A(-4,-2)和B(6,3),抛物线与y轴的交点为C.1、求这个抛物线的解析式;2、在抛物线上存在点M,使△MAB是以AB为底边的等腰三
把A(-1,0)C(0,3/2)带入y=ax²-2ax+b.0=a+2a+b3/2=ba=-1/2b=3/2y=-1/2x²+x+3/2顶点(1,2)
12,由题意,A(1,2),B(0,3).所以s△AOB的底边OB=3,高为1.故s△AOB=1/2×3=3/2..13,由于(2,b)在y=2x上,所以b=4..把x=2,y=4代入y=ax
(1)代入三点得25a+5b+c=036a+6b+c=-6c=0解得a=-1,b=5,c=0所以抛物线的函数关系式为y=-x^2+5x(2)C点在抛物线上,所以-1×2^2+5×2=m即m=6因为B(
当a=-1时,y=-x²+x+2=-(x-1/2)²+9/4∴顶点坐标(1/2,9/4),对称轴:直线x=1/2再问:下一问啊那是关键再答:下一问题目不完整。再问:当a=a1a=a
过原点x=0,y=0所以0+0+c=0c=0若开口向下,则肯定要经过第四象限所以开口向上a>0过第三象限则顶点在第三象限所以对称轴x=-b/2a0,所以b>0又,开口向上,过第三象限所以和x轴有两个交
将A、B点坐标代入抛物线方程,得c=1,4a+2b+c=-3即2a+b=-2,又因为抛物线关于x=-1对称,则也过A'(-2,1),代入得2a=b,综上,a=-1/2,b=-1,c=1.抛物线解析式为
y=ax^2,x^2=2*(1/2a)*y,即p=1/2a所以F(0,p/2)即F(0,1/4a),准线l:y=-p/2即y=-1/4a(1)直线L斜率不存在.易得只有一交点,不合题意(2)设直线L: