抛物线解析式为y=-x的平方 2x 3,交x轴

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 00:47:12
抛物线解析式为y=-x的平方 2x 3,交x轴
已知该抛物线y=ax平方+bx+c与抛物线y=2x平方的形状相同,顶点坐标2,-1,解析式

由抛物线y=ax平方+bx+c与抛物线y=2x平方的形状相同,得,a=2,由顶点坐标(2,-1),由顶点式,∴y=2(x-2)^2-1=2x^2-8x+7

提问已知抛物线y=x平方+2px+10的顶点再直线y=3x上,求此抛物线的解析式

y=x²+2px+10=x²+2px+p²-p²+10=(x+p)²-p²+10所以,此抛物线的顶点是(-p,-p²+10)由于顶

已知直线l的解析式:y=-2x+m-3,抛物线C:y=x平方+mx+3,

联立解方程组.把y=-2x+m-3带入C得:-2x+m-3=x²+mx+3x²+(m+2)x+6-m=0次方程有且只有一个解.Δ=(m+2)²-4×(6-m)=0解得:m

如图,抛物线y=-x的平方-2x+2,与y轴交与C点,点D为抛物线顶点,CE⊥OD交抛物线于E,求直线CE的解析式.

由y=-x²-2x+2,令x=0,得y=2,所以C点坐标为(0,2)又y=-x²-2x+2-(x²+2x-2)=-(x+1)²+3得抛物线的顶点坐标为(-1,3

已知抛物线的解析式为y=ax的平方,当x由1增加到2时函数值减小4,求此函数解析式.

由题意可知:a-4a=4a=-4/3所以:函数解析式为:Y=-4/3X

抛物线y=a(x+h)平方的顶点为(-2,0),它的形状与y=3x平方相同,但开口方向与之相反. (1)求抛物线解析式

说明a=-3,h=2所以解析式为:y=-3(x+2)²(2)令x=0,解得y=-12所以与y轴交点坐标为(0,-12)

已知抛物线y1=x的平方+x-k与直线y=-2x+1的交点的纵坐标为3. (1)求抛物线的解析式. (2)求抛物线y=x

(1)∵抛物线与直线的交点的纵坐标=3代入直线方程3=-2x+1x=-1再代入抛物线方程3=(-1)^2+(-1)-k,k=-3抛物线的解析式y=x^2+x+3(2)x^2+x+3=-2x+1x^2+

已知抛物线y=x平方+bx+c过原点,抛物线与x轴两交点间的距离为3,求抛物线的解析式

它过原点,则有C=0,它与X轴有两个交点,其中一个就是原点,另一个是(-b,0)|b|=3b=3,b=-3y=x*x+3x,y=x*x-3x

与抛物线y=-x^2-2x+3关于x轴对称的抛物线的解析式为_____.

关于x轴对称,则横坐标不变,纵坐标是相反数所以-y=-x^2-2x+3即y=x^2+2x-3

平移抛物线Y=1/2X的平方;,使顶点坐标为(t,t2),并且经过(2,4),求平移后抛物线的函数解析式.

因为平移后顶点为(t,t^2)所以平移后解析式为y-t^2=1/2(x-t)^2过点(2,4)将点代入4-t^2=1/2(2-t)^2解得:t=-2/3或t=2所以平移后抛物线的函数解析式为:y=1/

已知抛物线解析式为Y=2X平方+3MX+2M,其顶点坐标为(X0,Y0),求X0与Y0满足的关系式是

该抛物线为一元二次方程y=ax平方+bx+c的形式,其顶点坐标公式为(-b/2a,(4ac-b平方)/4a),即X0=-3m/4,所以m=-4X0/3,Y0=(16m-9m平方)/8,将m=-4X0/

已知:抛物线的解析式为y=x2-(2m-1)x+m2-m,

证明:(1)令y=0得:x2-(2m-1)x+m2-m=0①∵△=(2m-1)2-4(m2-m)×1>0(3分)∴方程①有两个不等的实数根,∴原抛物线与x轴有两个不同的交点(4分);(2)令:x=0,

一条抛物线的形状 开口方向与抛物线Y=二分一X的平方-4X+三相同,顶点是(-2,1)则抛物线的解析式为?

先看后一条抛物线y=x^2/2-4X+3x^2前的系数是正数所以开口向上设所求抛物线为y=ax^2+bx+c则a>0顶点在x=-b/2a处达到所以-b/2a=-2.1最大值1=(4ac-b^2)/4a

与抛物线y=-x2+2x+3,关于x轴对称的抛物线的解析式为______.

∵y=-x2+2x+3=-(x-1)2+4,顶点坐标为(1,4),(1,4)关于x轴对称的点的坐标为(1,-4),而两抛物线关于x轴对称时形状不变,只是开口方向相反,∴抛物线y=-x2+2x+3,关于

抛物线y=4x^2+1关于x轴对称的抛物线解析式为

抛物线y=4x^2+1关于x轴对称的抛物线解析式为:y=-4x^2-1

抛物线Y=x的平方+bx+c与x轴只有一个交点,坐标为(-2,0)求抛物线的解析式

²-4c=04-2b+c=0c=2b-4∴b²-4﹙2b-4﹚=0b²-8b+16=0﹙b-4﹚²=0b1=b2=4c=2×4-4=4∴y=x²+4x

已知:抛物线的解析式为 Y=X的平方减去(2M—1)X+M的平方—M 〔问题在下面〕

y=x²-(2m-1)x+m²-m1、判别式△=b²-4ac=4m²-4m+1-4m²+4m=1>0所以和x轴必有两个不同的交点2、x=3时y=0则0

抛物线y=2x平方-1的顶点为中心旋转180度后得到的抛物线解析式为

抛物线y=2x²-1的顶点是(0,-1).且过点(2,7)【这个可以凑数,最好凑个整数,x=2时,y=7】,抛物线绕顶点旋转180°之后,顶点仍就是顶点,点(2,7)以y=-1为镜面,其成象应