拓展 当ae切圆o于点e ag
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 23:11:05
夜猫猫_涵er,(图见参考资料.)1)如图1.连接DE、DF,AD为直径,则∠AED=90°=∠ADB;又∠BAD=∠BAD.则△AED∽△ADB,AD/AE=AB/AD,AD^2=AE×AB⑴;同理
求证的结果应该是AF=CF吧?若是我猜的证明如下:延长CD交圆于点P则可知AB⊥CP且平分CP∴弧AP=弧AC∵C是弧AE的中点∴弧AC=弧CE∴弧CE=弧AP∴∠PCA=∠EAC(同弧所对的圆周角相
连接OC因为CD直线切于圆,切点为C则OC垂直CD;又因为CD垂直AE,所以OC平行于AE;则角OCB=角E;在等腰三角形中角B等于角OCB,所以角B=角E;则AB=AE,所以AB=AE;注以上很多数
证明:连接AC,延长CD交圆O于M.CD垂直AB,则:弧AM=弧AC=弧CE,∠ACM=∠CAE;又AB为直径,∠ACB=90度.故:∠FCG=∠FGC(等角的余角相等)所以,CF=GF.
证明:因为BE//AC,AE//BD,则四边形OAEB是平行四边形.因为矩形ABCD是菱形,这有AO垂直于BO.所以平行四边形OABE是长方形.当矩形ABCD为正方形时,则有OB⊥OA且OB=OA,所
证明:如图,连接DE,∵AD是圆O的直径,∴∠AED=90°.又∵BC切圆O于点D,∴AD⊥BC,∠ADB=90°.在Rt△AED和Rt△ADB中,∠EAD=∠DAB,∴Rt△AED∽Rt△ADB.∴
(1)∵BM²=CM×MD又∵AB为圆O的直径,弦CD⊥AB∴CM=MD=2∴CD=4(2)∵AB为圆O的直径∴∠ACB=90°∵AE切圆O于点A∴∠EAB=90°又∵∠E=∠E∴△EAB与
不知道是不是晚了,还是把方法说一下.画图实在很麻烦,只能简单说一下原理,敬请见谅啊(1)连接OC,C为切点,所以OC垂直于PD因为AE垂直于PD,所以OC平行AE在三角形ABE中,O为AB中点,所以O
证明:连接DE、BC∵在△ACE和△ABD中, AE=AD
(1)证明:作直径AG交BC于H,∵AE是⊙O的切线,切点为A,∴AG⊥AD,∵BC∥AE,∴AG⊥BC,∵AG为直径,∴AG是BC的垂直平分线,∴AB=AC,∵BD平分∠ABC,∴∠ABD=∠DBC
作辅助线CE,BD然后用角边角定理,证明△NEC和△MDB全等(EC=DB,∠NEC=∠MDB,∠NCE=MBD.前两个条件是正五边形的定理,后面一个只要用内角和推敲一下就知道了,在此就不多说了)画图
连接AO,∵AD=AE,∠ADO=∠AEO=90°,AO=AO∴△ADO≌△AEO∴OD=OE又∠DOB=∠EOC,∠ODB=∠OEC=90°∴△BOD≌△COE∴OB=OC∴∠OBC=∠OCB又∵∠
用到四点共圆、射影定理及切割线定理,如图所示:
1个用45度角可以证,第二个OH=1再问:请问,是怎么证明第二问的,能给个提示吗再答:延长CB与AE相交然后利用等边直角三角形可以求,不懂可以再问我哈
OA/OF?当n=1/2时,说明D、E分别是AB、AC上的三等分点之一,作出AB、AC上的另外一个三等分点D'、E'.连接DE、D´E´分别交AF于点M、点N.根据AD/BD=AE
BE是⊙O的切线.[证明]∵AB是⊙O的直径,∴AC⊥BC,∴BC⊥CE,而D是BE的中点,∴CD=BD.∵OC=OB、OD=OD、CD=BD,∴△OCD≌△OCB,∴∠OCD=∠OBD.∵CD切⊙O
当AC=DB时,四边形OAEB是正方形理由:∵AE∥BO,BE∥AO,∴四边形OAEB是平行四边形,又∵四边形ABCD是菱形,∴AC⊥DB.∴∠AOB=90°,∴平行四边形OAEB是矩形.又AC=BD
证明:连AC因为C是弧AE的中点所以弧AC=弧EC所以∠CAE=∠ABC因为AB是直径所以∠ACB=90,即∠ACD+∠BCD=90°因为CD⊥AB所以∠CDB=90°即∠ABC+∠BCD
连接CO,CB∵AB为直径∴△ACB为直角△∵BE切圆O于点B∴∠ACB=∠ABE=90°∴∠CAB+∠CBA=∠CBA+∠CBE=90°∴∠CAB=∠CBE∵∠BCE=90°,D是BE的中点∴DC=
证明:∵等边△ABC,等边△DCE∴AC=BC,DC=EC,∠BAC=∠ABC=∠ACB=∠DCE=60∵∠ACE=∠DCE+∠ACD,∠BCD=∠ACB+∠ACD∴∠ACE=∠BCD∴△ACE≌△B