换元积分法 e^x 2 根号9-e^x
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 11:36:52
令根号下1+e^x=t则有1+e^x=t^2dx=[2t/(t^2-1)]dt原式=2∫t^2/(t^2-1)dt=2∫1+1/(t^2-1)dt=2t+ln|(t-1)/(t+1)|+c再问:1/(
用换元法
令√(1+e^x)=m则x=ln(m^2-1)上式=∫dln(m^2-1)/m=∫2/(m^2-1)dm=ln|(m-1)/(m+1)|+C=ln|(√(1+e^x)-1)/(√(1+e^x)+1)|
∫e^√xdx令u=√x,x=u^2,dx=2udu原式=2∫u*e^udu=2∫ud(e^u)=2(u*e^u-∫e^udu),分部积分法=2u*e^u-2*e^u+C=2e^u*(u-1)+C=2
1+e^x=t^2x=ln(t²-1)dx/dt=2t/(t^2-1)
再答:楼主?再问:哦看到了再问:阿里噶多~再问:在百度上问高数都是半天没人回的那种..手机就放一边看书了没想到你回的挺快哈再答:嘿嘿再答:考研党不解释
1.换元积分法是借助复合函数求导法而得到.第一类换元积分法作变量代换,第二类换元积分法作变量代换.2.第一类换元积分法又称为“凑微分”法,要根据被积函数的特点找出,再将表示为,这一部分是不定积分中较难
令u=lnx,x=e^u,dx=e^udu故∫(0,3)dx/[x√(4-lnx)]=∫(0,3)e^u/[e^u·√(4-u)]du=∫(0,3)1/√(4-u)du=-2√(4-u)|(0,3)=
∫x(根号下x²-9)·dx=1/2*∫(根号下x²-9)·dx²=1/2*2/3*(x²-9)^(3/2)+C=(x²-9)^(3/2)/3+C
是的
采纳吧再问:thanks!
复合函数的微分运算的逆运算.复合函数y=F[g(x)]由y=F(u),u=g(x)复合而成,F'(u)=f(u),所以,dy=d(F[g(x)])=d(F(u))=F'(u)du=F'[g(x)]d(
设x=asinu,dx=acosudu原式=∫(asinu)^2/(acosu)*acosudu=a^2∫(sinu)^2du=a^2/2∫(1-cos2u)du=a^2/2(u-1/2sin2u)+
√x=tx=t²dx=2tdt∫(0-->1)2te^tdt=2∫(0-->1)tde^t=2te^t-2∫e^tdt=2te^t-2e^t(0-->1)=2e-2e-(-2)=2
这是求不定积分还是定积分?积分区间呢?∫√e^x/√(e^x+e^-x)dx=∫√e^x/√[1+e^(2x)]/√e^xdx=∫d(e^x)/√[1+e^(2x)]令e^x=tanθ,d(e^x)=
1、令t=lnx则原式=∫lntdt.用分部积分法,取,u=lnt,dv=dt,v=t即可2、取u=e^(2x),dv=sinxdx,v=-cosx.用两次分部积分,然后移项整理即可3、令t=√(x+