收敛唯一性的证明
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 12:11:11
这个惟一性定理的证明,用的反证法.用反证法证题的关键是合理地“制造”矛盾,及时发现并揭露矛盾.O客认为,在世界上首次用取ε=d/2来证明出这个定理的人,一定是本人(或借鉴他人)经过无数次的尝试,为解决
设a,b是数列{an}的两个聚点,a0,存在N1,当n>N1时,有:an-aN1.于是:am-a
设函数f(x)的定义域为D,数集X⊆D如果存在数K1使得 f(x)≤K1对任意x∈X都成立则称函数f(x)在X上有上界.而K设函数f(x)的定义域为D,数集X&#
你要假设也可以..虽然不用..直接令t=(a+b)/2,令ε=|t-a|就可以了
其它的也可以,只要能说明问题就行,在证明唯一性中,ε=(b-a)/2或更小的数,如ε=(b-a)/4之类的都是可以证出来的.希望可以帮到你,如果解决了问题,请点下面的"选为满意回答"按钮,再问:为什么
因为E是任意的.如果我们假设a,b不相等,即a与b的差值不为0,则我们设|a-b|=t,(t不等于0)则我们一定能找到一个E满足0
设{xn}极限为A,回忆一下极限定义,任取ε>0,存在N>0,当n>N时,有|xn-A|B取ε=(A-B)/2,存在N1,当n>N1时,有|xn-A|N2时,有|xn-B|N时,上面两式同时成立(1)
对第一个问题进行解答反证法n+1个点(设为(X1,Y1)(X2,Y2)……(Xn+1,Yn+1))确定一个最高次为n的多项式假设可以确定两个多项式为P(X),Q(X)且P(X)不等于Q(X)令F(X)
构造--这样|xn-a
传个照片上来啊先说一个数列极限的一个性质有数列极限的定义知若果A(n)当n趋无穷时A(n)=a说明对于任意给定的e(e>0)存在N当n>N时绝对值(A(n)-a)
我提供一下我的想法,你参考一下:先把序列构造出来:{Xn},X2k-1=ak,X2k=bk,[ak,bk]组成一个区间套,满足lim|In|=0显然这个数列是一个柯西列∴有极限c,现在要证明c∈[an
难道不唯一吗?
唯一性:limXn=alimXn=b由定义:任意ε>0,存在N1>0,当n>N1,有|Xn-a|0,存在N2>0,当n>N2,有|Xn-b|0,存在N>0,当n>N,有|Xn-a|N,有|xn-a|N
极限定义,数形结合,数列与极限,任意小,比与另一距离》[a-b]/2,fanzheng
一般都是证明区间内单调
不是吧,这种题一般高数中都会有证明的.方法不止一种证:若L1与L2不相等,不妨设L1L2一样证)由limf(x)=L1和limf(x)=L2知取E=(L2-L1)/2,存在一个数a,当0
设limxn=alimxn=ba0,存在N1>0,当n>N1时|xn-a|0,存在N2>0,当n>N2时|xn-b|
证明=>{an}收敛于a=>对任意ε>0,存在N>0,对任意n>N时,有|an-a|N时有2n-1>n,所以对任意ε>0,存在N,对任意n>N,|a(2n-1)-a|N时有2n>n,所以对任意ε>0,