收敛数列和子列的关系
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/20 05:58:17
我觉得你没有理解数列极限的研究对象,对于无穷多项的数列,我们才可以求它的极限,讨论它的敛散性,对于有限项的数列我们是不定义其极限的,自然更谈不上子数列,收敛等问题了,数列极限的表达式limxn如果写全
反证法.若{an}不以a为极限,则取ε=1,对任意的N,存在n0>N,使得|an0-a|>1,取N=1,得n1使得|an1-a|>1;取N=n1,得n2>n1,使得|an2-a|>1;.取N=nk,得
首先,数列收敛就是数列有极限,(-1)^n*(1/n)偶数项和奇数项都是收敛的,极限都为0;其次,一个收敛数列其任意子数列必收敛,这可以结合数列收敛定义反证出;最后强调,子数列收敛针对任意子序列,不分
反证法:如果不存在两个不同极限的收敛子列,又数列有界,即所有子列的极限相同,(不能为无穷大了)根据数列极限与子列极限的关系,得原数列必收敛!矛盾!从而必存在两个不同极限的收敛子列.
子列{Xnk}的下标nk(k是n的下标)一方面代表原数列{Xn}的第nk项,另一方面也表示子列的第k项.我们需要找到正整数K,使得k>K时,恒有|Xnk-a|<ε成立.既然Xnk还是{Xn}的第nk项
其子序列的极限与原来的收敛序列的极限相同.从取K=N开始,按定义证明就是说n(k)>N就有|Xn(k)-a|
不妨设这个数单增,即a1=ank>ak所以数列ak是一个单增有上界的数列,所以收敛.进一步还可以说明ak→
聚点定理:任意有界无穷数集至少有一个聚点.对此数列,若有无穷多个相同的项,则此以这些相同的项构成的数列的为该数列的收敛子列.若没有无穷多个相同的项,则该数列的每一个元素作为集合S的一个元素.由聚点定理
证明:任取一收敛子列(一定存在)设其极限为a,则在a的一充分小领域外,一定有这一有界数列的无限项(仍然有界),从而有收敛子列其极限一定不等于a再问:在充分小的邻域外应该只有有限项了啊,因为从n>N开始
这个数列的无限子数列也收敛,而且收敛到母数列的极限值,证明很简单.比如数列a1,a2,a3...an...收敛到A,它的子数列无非就是在这个数列中抽值,比如子数列是a2,a6,a11...am...,
很简单呀1/n就是个发散数列但取子序列1/n[i]其中取n[i]=n²就是子数列就是1/n²收敛
黄线部分就是楼主蓝线部分的运用,解释下蓝线部分就明白了.|Xnk|为原数列的|Xn|子数列,而且子数列保持原数列的排序未变,则Xnk是子数列|Xnk|的第k项,而是原数列|Xn|的第nk项,显然有nk
比如an=1-1/n(当n是奇数)an=2-1/n(当n是偶数)显然数列{an}不收敛但如果令bn=a(2n)那么{bn}就是{an}的一个子列,且{bn}收敛于2于是{bn}就是{an}的一个收敛子
设数列{Xn}为有界数列,有A
在完成证明之前先引入一个结论:任一数列中都能取出一个单调子列.证:引入一个定义:如果数列中的一项大于在这个项之后的所有各项,则称这一项是一个“龙头”.下面分2种情况:情况1如果在数列中存在无穷多个“龙
设An={ai|i>=n},n=1,2,.An是有界集,所以存在上确界bn,下确界cn.且有:c1
1,-1,1,-1,1,-1.该数列有收敛子列,但本身不收敛.
不妨设Xn为单增数列,设{Xk}为{Xn}的收敛子列,且{Xk}极限为a,则a为{Xk}的上界下证a为{Xn}的上界任取Xn0,存在Xk0,使Xk0在数列{Xk}中,且k0>n0由于a为{Xk}的上界
嗯,要看是不是正项级数了,如果是正项的,那么成立.如果不是正想的级数,那么该结论未必成立.比如级数-1/n收敛,偶数项或者奇数项构成的级数都发散.再答:不好意思,上面例子写错了级数,要写成交错项的…是