数列a1 a2 a3=15 数列bn
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 19:06:14
数列{An}及数列{Bn}都为等差数列,所以2an=a(n+1)+a(n-1)2bn=b(n+1)+b(n-1)cn=an+bn所以2cn=2an+2bn=a(n+1)+a(n-1)+b(n+1)+b
a2^3=64,a2=4,a1+a3=-10,a1a3=16所以a1=-2,a3=-8或a1=-8,a3=-2舍去丨q丨>1所以q=-2an=a1q^(n-1)=(-2)^n(2)bn=(2n+1)*
把4/2^(4n)化为4/4^(2n)=4^(1-2n),然后9n与4^(1-2n)(错位相减)分别求和再加起来即可
因为a1a2a3=8所以a2/q*a2*a2*q=8a2^3=8,a2=2又a1+a2+a3=7即a2/q+a2+a2*q=71/q+q=5/2=2+1/2所以q=2或1/2即a1=1或4.所以an=
由题意可知bk-b(k-1)=2^(k-1)+(k-1)当k=2,3,4,...,n时b2-b1=2^1+1b3-b2=2^2+2.bn-b(n-1)=2^(n-1)+(n-1)将这n-1个等式相加,
有什么不懂的可以追问啊,再问:你好我有一处想不清楚。按上面的解答是m、n的值决定了d的最大值,可是5-d+3/q=m,5+d+3q=n这一步里n、m的取值不也由d影响吗?我做的时候把上面的m、n代入解
1=log2(a1-1)=log22=1b3=log2(a3-1)=log28=3所以b2=2,bn=nn=log2(an-1),an=2^n+1Sn=2(1-2^n)/-1+n=2^(n+1)+n-
学长衷心的话:在做数列的综合题是,不要怕算,一定要熟练的记住应用数列定义,在求和时,一般都会把复杂的不熟悉的式子转化为我们学过的等差或等比数列,熟练的掌握错位相减法和倒序相加法,建议在复习
(1)利用通项公式把两个式子写出来,求出an和q就可以写出通项(2)把2n+1拆开就算出前n项和了
这类问题你只要把握一个规律:an是等差数列,bn是等比数列,那么an*bn或an/bn的前n项和的求法就是乘以公比(这道题目是2),然后就会出来另一个等比数列的求和.反正就是这
a1+a1q+a1q^2=7a1^3q^3=8a1q=2a1+2+a1q^2=7a1+a1q^2=5a1=2/q2/q+2/q*q^2=52/q+2q=52+2q^2=5q2q^2-5q+2=0(2q
an=a1+(n-1)mbn=b1+(n-1)p则liman/bn=m/p=31im(b1+b2+...+bn)/n*a3n=lim(nb1+n(n-1)p/2)/n*(a1+(3n-1)m)=p/6
n=n(n+1)=n^2+nSn=b1+b2+...+bn=(1^2+1)+(2^2+2)+...+(n^2+n)=(1^2+2^2+...+n^2)+(1+2+...+n)=n(n+1)(2n+1)
(1)An为等差数列故An=1+2(n-1)=2n-1则Bn=1/(2n-1)(2n+1)=〔1/(2n-1)-1/(2n+1)〕/2Sn=〔1-1/3+1/3-1/5+1/5-.+1/(2n-1)-
这个不一定的:比如Bn=-An,显然{An+Bn}收敛到0比如An={1,0,1,0,……},Bn={0,1,0,1……}显然{AnBn}收敛到0
列举几项就是了an=1,3,6,10,15,21,28,……bn=3,6,15,21,……所以bn是an的第3n-1和3n项组成n为奇数时,bn=a(3(n+1)/2-1)=a((3n+1)/2)=3
d(n)=2^n+n,p(1)=d(1)=2^1+1=3,p(n+1)=d(n+1)+d(n)=2^(n+1)+(n+1)+2^n+n=3*2^n+2n+1,L(2n-1)=d(2n-1)=2^(2n
(n+1)=3bn/(3+bn)做倒数1/b(n+1)=1/3+1/bn因此1/bn是公差为1/3的等差数列1/bn=1/b1+(n-1)/31/bn=1+n/3-1/31/bn=(2+n)/3bn=
n-b(n-1)=1/(2-4/(an-1))-1/(a(n-1)-2)=a(n-1)/(2a(n-1)-4)-2/(2a(n-1)-4)=(a(n-1)-2)/(2a(n-1)-4)=1/2,所以数