数列a1=2, a(n 1)-an=3*2^2n-1,求数列{an}的通项式

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 18:55:45
数列a1=2, a(n 1)-an=3*2^2n-1,求数列{an}的通项式
若数列{An}满足A1=1,A(n+1)=An/(2An + 1)

1)1/3,1/52)倒数变换一下即可证明从该步骤得到an=1/(2n-1)3)T=(1/1*1/3+1/3*1/5+1/5*1/7+……+[1/(2n-3)][1/(2n-1)]=1/2(1-1/3

在数列{an}中,已知a1=2,a(n+1)=2an/(an+1),证明数列{1/an-1}为等比数列,并求出数列{an

a(n+1)=2an/(an+1)∴1/a(n+1)=(an+1)/2an=1/2an+1/2∴1/a(n+1)-1=1/2an+1/2-1=1/2an-1/2=(1/2)(1/an-1),1/a1-

数列{an},a1=1/2,a(n+1)=3an/(an)+3,

直接得出通项,具体数值LZ求吧a(n+1)=3an/an+32边倒数得1/a(n+1)=an+1/3变换得1/a(n+1)-1/an=1/3所以{1/an}是以2为首项,公差为1/3的等差数列所以1/

已知数列an中,a1=2,a(n+1)=1/an+1求2009

a1=2=2/1a2=1/2+1=3/2a3=2/3+1=5/3a4=3/5+1=8/5a5=5/8+1=13/8所以对第n项的分母来说,有以下规律1,2,3,5,8,后一项是前一项与再前一项的和,由

设数列{an}中,a1=2,a(n+1)=an+n+1,求an

a(n+1)=a(n)+n+1,a(n)=a(n-1)+(n-1)+1,...a(2)=a(1)+1+1,等号两边求和.有,a(n+1)+a(n)+...+a(2)=a(n)+...+a(2)+a(1

数列an中 a1=1 a(n+1)=2an\(an+2) 求数列通项公式an

1/a(n+1)=(an+2)/2an=1/2+1/an1/a(n+1)-1/an=1/2所以1/an是等差数列,d=1/21/an=1/a1+1/2*(n-1)=(n+1)/2an=2/(n+1)

已知数列{an}满足a1=100,an+1-an=2n,则a

a2-a1=2,a3-a2=4,…an+1-an=2n,这n个式子相加,就有an+1=100+n(n+1),即an=n(n-1)+100=n2-n+100,∴ann=n+100n-1≥2n•100n-

19.一直数列An,A1=m,A(n+1)=2An+3^(n+1).

A(n+1)=2An+(3-2)*3^(n+1),A(n+1)-3^(n+2)=2(An-3^(n+1)),令Cn=An-3^(n+1),则C1=m-9,Cn=(m-9)*2^(n-1).故An=(m

数列A(n+1)=2An+2n-3,A1=2,求An

由A(n+1)=2An+2n-3//化成等比数列化简得∴A(n+1)+2(n+1)-1=2(An+2n-1)故{An+2n-1}可看成是首项是A1+2*1-1=3,公比是2的等比数列∴An+2n-1=

已知数列{an}满足a1=4/3,2-a(n+1)=12/an+6

2-a(n+1)=12/(an+6)a(n+1)=2an/(an+6)1/a(n+1)=(an+6)/[2an]1/a(n+1)+1/4=3(1/an+1/4)[1/a(n+1)+1/4]/(1/an

数列{an},a1=1,a(n+1)=2an-n^2+3n

a(n+1)=2an-n^2+3n=2an+(n+1)^2-(n+1)-2n^2+2n将(n+1)^2-(n+1)移过去得a(n+1)-(n+1)^2+(n+1)=2(an-n^2+n)再两边同除(a

已知数列an满足条件a1=-2 a(n+1)=2an/(1-an) 则an=

取n=1,a1=2an/(1-an)=2a1/(1-a1),则a1=0或者-1.a1=-2a(n+1),取n=n-1,则a1=-2an,an=-a1/2=0或者1/2.再问:我要的是通项公式你的答案是

在数列{an}中,a1=2,a(n+1)=an+ln(1+1/n)

A(n+1)=An+ln(1+1/n)a(n+1)-an=ln(1+1/n)=ln【(n+1)/n】an=a1+(a2-a1)+(a3-a2)+(a4-a3)+.+(an-an-1)=2+ln(2/1

数列an,a1=1,a(n+1)=an/(2an+1),求通向an

1/a(n+1)=2+1/an,1/a(n+1)-1/an=2,成等差,则1/an=1/a1+2(n-1),an=1/(2n-1)

已知数列{an}的首项a1=2,an+1=2a

∵an+1=2anan+2,∴1an+1=an+22an=12+1an,即1an+1-1an=12,∴数列{1an}是等差数列,公差d=12,首项12,∴1an=12+12(n-1)=n2,即an=2

已知数列{an}中,a1=-1,a2=4,an+2+2an=3an+1 求证:数列{an+1-an}是等比数列,并求{a

a(n+2)+2an=3a(n+1)a(n+2)-a(n+1)=2a(n+1)-2an[a(n+2)-a(n+1)]/[a(n+1)-2an]=2∴数列{an+1-an}是等比数列a(n+1)-an=

设数列{an},a1=3,a(n+1)=3an -2 (1)求证:数列{an-1}为等比数列

方法一:A(n+1)-1=3An-3=3(An-1),且A1-1=2,所以数列{An-1}为公比为3,首项为2的等比数列方法二:设A(n+1)+k=3(an+k),即A(n+1)=3An+2k,则2k

已知数列{an}满足,a1=2,a(n+1)=3根号an,求通项an

a1=2>0假设当n=k(k∈N+)时,ak>0,则a(k+1)=3√ak>0k为任意正整数,因此对于任意正整数n,an恒>0,数列各项均为正.a(n+1)=3√anlog3[a(n+1)]=log3

已知数列{an}满足条件:a1=5,an=a1+a2+...a(n-1) n大于等于2,求数列{an}的通项公式

据题意:5+(n-1)*d=5*(n-1)+(1+2+···n-2)*d5+(n-1)*d=5n-5+{[(n-2)(n-1)]/2}*d5+n*d-d=5n-5+[(n^2)/2]*d-(3n/2)

a1=3.a(n+1)=2an-1,证明数列an-1是等比数列

因为a1=3a(n+1)=2an-1所以a(n+1)-1=2an-1-1=2(an-1)即(a(n+1)-1)/(an-1)=2,且a1-1=3-1=2≠0所以数列{an-1}是等比数列,首项为2,公