数列an满足a1等于二分之一
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 18:38:05
an=4-4/a(n-1)an-2=2-4/a(n-1)=2{[a(n-1)-2]/a(n-1)}于是有1/(an-2)=1/2+1/[a(n-1)-2]所以有bn=1/2+b(n-1)即bn-b(n
由题意可得,an+1-an=-1,此等差数列是以2为首项,以-1为公差的等差数列,则此数列的通项an=2+(n-1)d=3-n,故选D.
(1)有个公式,an=a1+(n-1)da2=a1+d=3(1)a5=a1+4d=6(2)(2)-(1),得3d=3d=1把d=1代入(1),得a1=2因为有个公式,an=a1+(n-1)d所以an的
两边同除an*an+1得:1/an-1/an+1=11/an+1-1/an=-1,所以数列{1/an}为等差数列1/an=1/a1+(-1)*(n-1)1/a31=1/2+(-1)*301/a31=-
∵a1=2,∴a2=−12+1=-13,a3=−32,a4=2,依此类推,数列是周期为3的数列,∴a2010=a3=−32,故选C
an=(2^n)-1
an/2^n=(2an-1)/2^n+1=(an-1)/2^(n-1)+1an/2^n-(an-1)/2^(n-1)=1则{an/2^n}是公差为1的等差数列.设Tn=an/2^n则Tn是公差为1的等
如果an=n(n+an-1)的an-1表示第n-1项所以an=n^2+nan-1所以an-nan-1=n^2an-1-(n-1)an-2=(n-1)^2an-2-(n-2)an-3=(n-2)^2..
A1=1/2成立,设An=1/[n(n+1)]成立,因为A1+A2+…+An=n^2An所以A1+A2+…+An+A(n+1)=(n+1)^2A(n+1),所以A(n+1)=(n+1)^2A(n+1)
a1=2,an=3a(n-1)(n大于等于2)∴an/a(n-1)=3那么{an}为等比数列,公比q为3∴an=a1*q^(n-1)an=2*3^(n-1)
等于2,规律就是6个以后就是反复了.
应该是A(n+1)=An+2n吧~~~=>a(n+1)-an=2n所以an-a(n-1)=2(n-1)a(n-1)-a(n-2)=2(n-2)...a2-a1=2*1把左边加起来,右边加起来得到an-
根据A1求得A2=1/4,又An*An+1=(1/2)*(1/4)^n(An+1)*(An+2)=(1/2)*(1/4)*(1/4)^(n+1),两式相比,得(An+2)/An=1/4,所以当n为奇数
a(n+1)=2a(n)/[a(n)+2],a(1)=2>0,由归纳法知a(n)>0.1/a(n+1)=[a(n)+2]/[2a(n)]=1/2+1/a(n),{1/a(n)}是首项为1/a(1)=1
据题意:5+(n-1)*d=5*(n-1)+(1+2+···n-2)*d5+(n-1)*d=5n-5+{[(n-2)(n-1)]/2}*d5+n*d-d=5n-5+[(n^2)/2]*d-(3n/2)
an+2SnSn-1=0Sn-Sn-1+2SnSn-1=01/Sn-1/Sn-1=21/Sn=2+2(n-1)Sn=1/nan=Sn-Sn-1=1/n-1/(n-1)1/2n=1an=-1/[n(n-
1.n≥2时,a(n-1)+1=2an2an-2=a(n-1)-1(an-1)/[a(n-1)-1]=1/2,为定值.a1-1=1/2-1=-1/2,数列{an-1}是以-1/2为首项,1/2为公比的
A2=A1+1A3=A2+2A4=A3+3.An=A(n-1)+(N-1)左式上下相加=右式上下相加An=A1+[1+2+3+...+(N-1)]An=1+[N(N-1)]/2
HI我