数列an满足an=4n-1
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 18:24:18
an=1+2+3+…+n=[n(n+1)]/2则:1/(an)=2/[n(n+1)]=2[(1/n)-1/(n+1)],所以:M=1/(a1)+1/(a2)+1/(a3)+…+1/(an)=2[1/1
1)1/3,1/52)倒数变换一下即可证明从该步骤得到an=1/(2n-1)3)T=(1/1*1/3+1/3*1/5+1/5*1/7+……+[1/(2n-3)][1/(2n-1)]=1/2(1-1/3
(1)设f(x)=(3x-2)/x,方程f(x)=x有1,2俩个根A(n+1)-1=(3An-2)/An-1=2(An-1)/An(A(n+1)-1)/(A(n+1)-2)=2(An-1)/(An*(
(1)由已知a2=2a1+2,a3=2a2+3=4a1+7,若{an}是等差数列,则2a2=a1+a3,即4a1+4=5a1+7,得a1=-3,a2=-4,故d=-1. &nbs
2-a(n+1)=12/(an+6)a(n+1)=2an/(an+6)1/a(n+1)=(an+6)/[2an]1/a(n+1)+1/4=3(1/an+1/4)[1/a(n+1)+1/4]/(1/an
(Ⅰ)由题意可得数列{an}是首项为1,公比为3的等比数列,故可得an=1×3n-1=3n-1,由求和公式可得Sn=1×(1−3n)1−3=12(3n−1);(Ⅱ)由题意可知b1=a2=3,b3=a1
(1)根据题意,有An=(An-An-1)+(An-1-An-2)+…+(A2-A1)+A1=3-2^(2n-3)+3-2^(2n-5)+…+(3-2^3)+2再用分组求和法:=3n-【2^(2n-3
a1=1an=an-1+3n-2an-1=an-2+3(n-1)-2...a2=a1+3*2-2左右分别相加an=a1+3*(n+n-1+...+2)-2*(n-1)an=1+3*(n+2)*(n-1
a1=1/2a(n+1)=an+1/(4n²-1)=an+(1/2)[1/(2n-1)-1/(2n+1)]2a(n+1)=2an+1/(2n-1)-1/(2n+1)2a(n+1)+1/(2(
a(n+1)+an=4n-3,an+a(n-1)=4*(n-1)-3,故a(n+1)-a(n-1)=4,(n≥2)a1=2,a2=-1当n为奇数时,an=2+(n-1)/2*4=2n,a(n-1)=-
应该是A(n+1)=An+2n吧~~~=>a(n+1)-an=2n所以an-a(n-1)=2(n-1)a(n-1)-a(n-2)=2(n-2)...a2-a1=2*1把左边加起来,右边加起来得到an-
a(n+1)-2an=3.5^n,则a2-2a1=3.5^1a3-2a2=3.5^2.a(n+1)-2an=3.5^n以上式子相加,得a(n+1)-a1-Sn=3.5+3.5^2+...+3.5^n=
1、a(n+1)/an=(n+2)/(n+1)a(n+1)/(n+2)=an/(n+1)设cn=an/(n+1)则c(n+1)=a(n+1)/(n+2),且c1=a1/(1+1)=1即c(n+1)=c
你应该是抄错题了吧--A(n+1)=2An+2^n等式两边同时除以2^(n+1)有A(n+1)/2^n+1=An/2^n+1/2设Bn=An/2^n则B(n+1)=Bn+0.5Bn是等差数列即An/2
1.a_(1)=1,a_(n+1)=2a_(n)+2^(n)----------------1b_(n)=a_(n)/2^(n)将式子1左右两边同时除以2^(n+1),则:b_(n+1)=b_(n)+
(1)a(n+1)/2^(n+1)=an/(an+2^n)2^(n+1)/a(n+1)=(an+2^n)/an=1+2^n/an2^(n+1)/a(n+1)-2^n/an=1所以{2^n/an}是以公
A2=A1+1A3=A2+2A4=A3+3.An=A(n-1)+(N-1)左式上下相加=右式上下相加An=A1+[1+2+3+...+(N-1)]An=1+[N(N-1)]/2
本题需要先对an的取值范围进行判断,然后才能用取对数、用待定系数法,因此过程比较复杂.a0=10