数列an满足an=4n-1

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 18:24:18
数列an满足an=4n-1
已知数列an满足an=1+2+...+n,且1/a1+1/a2+...+1/an

an=1+2+3+…+n=[n(n+1)]/2则:1/(an)=2/[n(n+1)]=2[(1/n)-1/(n+1)],所以:M=1/(a1)+1/(a2)+1/(a3)+…+1/(an)=2[1/1

若数列{An}满足A1=1,A(n+1)=An/(2An + 1)

1)1/3,1/52)倒数变换一下即可证明从该步骤得到an=1/(2n-1)3)T=(1/1*1/3+1/3*1/5+1/5*1/7+……+[1/(2n-3)][1/(2n-1)]=1/2(1-1/3

已知数列{An}满足:A1=3 ,An+1=(3An-2)/An,n属于N*.1)证明:数列{(An--1)/(An--

(1)设f(x)=(3x-2)/x,方程f(x)=x有1,2俩个根A(n+1)-1=(3An-2)/An-1=2(An-1)/An(A(n+1)-1)/(A(n+1)-2)=2(An-1)/(An*(

已知数列{an}满足an+1=2an+n+1(n∈N*).

(1)由已知a2=2a1+2,a3=2a2+3=4a1+7,若{an}是等差数列,则2a2=a1+a3,即4a1+4=5a1+7,得a1=-3,a2=-4,故d=-1.  &nbs

已知数列{an}满足a1=4/3,2-a(n+1)=12/an+6

2-a(n+1)=12/(an+6)a(n+1)=2an/(an+6)1/a(n+1)=(an+6)/[2an]1/a(n+1)+1/4=3(1/an+1/4)[1/a(n+1)+1/4]/(1/an

设数列{an}满足:a1=1,an+1=3an,n∈N+.

(Ⅰ)由题意可得数列{an}是首项为1,公比为3的等比数列,故可得an=1×3n-1=3n-1,由求和公式可得Sn=1×(1−3n)1−3=12(3n−1);(Ⅱ)由题意可知b1=a2=3,b3=a1

设数列an满足a1=2 an+1-an=3-2^2n-1

(1)根据题意,有An=(An-An-1)+(An-1-An-2)+…+(A2-A1)+A1=3-2^(2n-3)+3-2^(2n-5)+…+(3-2^3)+2再用分组求和法:=3n-【2^(2n-3

数列{an}满足a1=1,且an=an-1+3n-2,求an

a1=1an=an-1+3n-2an-1=an-2+3(n-1)-2...a2=a1+3*2-2左右分别相加an=a1+3*(n+n-1+...+2)-2*(n-1)an=1+3*(n+2)*(n-1

已知数列an满足a1=1\2 an+1=an+1\4n平方-1 则an

a1=1/2a(n+1)=an+1/(4n²-1)=an+(1/2)[1/(2n-1)-1/(2n+1)]2a(n+1)=2an+1/(2n-1)-1/(2n+1)2a(n+1)+1/(2(

已知数列{an}满足an+1+an=4n-3 当a1=2时,求Sn

a(n+1)+an=4n-3,an+a(n-1)=4*(n-1)-3,故a(n+1)-a(n-1)=4,(n≥2)a1=2,a2=-1当n为奇数时,an=2+(n-1)/2*4=2n,a(n-1)=-

已知数列{an}中,a1=1,满足an+1=an+2n,n属于N*,则an等于

应该是A(n+1)=An+2n吧~~~=>a(n+1)-an=2n所以an-a(n-1)=2(n-1)a(n-1)-a(n-2)=2(n-2)...a2-a1=2*1把左边加起来,右边加起来得到an-

已知数列{an}满足an+1=2an+3.5^n,a1=6.求an

a(n+1)-2an=3.5^n,则a2-2a1=3.5^1a3-2a2=3.5^2.a(n+1)-2an=3.5^n以上式子相加,得a(n+1)-a1-Sn=3.5+3.5^2+...+3.5^n=

设数列{an}满足an+1/an=n+2/n+1,且a1=2

1、a(n+1)/an=(n+2)/(n+1)a(n+1)/(n+2)=an/(n+1)设cn=an/(n+1)则c(n+1)=a(n+1)/(n+2),且c1=a1/(1+1)=1即c(n+1)=c

已知数列{An}满足A1=1,An+1=2An+2^n.求证数列An/2是等差数列

你应该是抄错题了吧--A(n+1)=2An+2^n等式两边同时除以2^(n+1)有A(n+1)/2^n+1=An/2^n+1/2设Bn=An/2^n则B(n+1)=Bn+0.5Bn是等差数列即An/2

已知数列{AN}满足A1=1,AN+1=2AN+2的N次方.

1.a_(1)=1,a_(n+1)=2a_(n)+2^(n)----------------1b_(n)=a_(n)/2^(n)将式子1左右两边同时除以2^(n+1),则:b_(n+1)=b_(n)+

数列{an}满足a1=1 an+1=2n+1an/an+2n

(1)a(n+1)/2^(n+1)=an/(an+2^n)2^(n+1)/a(n+1)=(an+2^n)/an=1+2^n/an2^(n+1)/a(n+1)-2^n/an=1所以{2^n/an}是以公

已知数列{an}满足an+1=an+n,a1等于1,则an=?

A2=A1+1A3=A2+2A4=A3+3.An=A(n-1)+(N-1)左式上下相加=右式上下相加An=A1+[1+2+3+...+(N-1)]An=1+[N(N-1)]/2

高一数列题 !已知数列{an}的各项都是正数,且满足:a0=1,an 1=1/2an*(4-an).(n属于N)

本题需要先对an的取值范围进行判断,然后才能用取对数、用待定系数法,因此过程比较复杂.a0=10