数列lgan=3n 5求an事等差数列

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 01:14:20
数列lgan=3n 5求an事等差数列
已知数列{lgAn}是等差数列,求证{An}是等比数列

lgA(n+1)-lgAn=q(q为常数)lgA(n+1)/An=dqA(n+1)/An=10^q所以{An}是等比数列

若数列{an}是公比为q的等比数列,且bn=lgan,求证{bn}为等差数列

设an=a1*q^(n-1),那么bn=lgan=lg(a1*q^(n-1))=lga1+(n-1)lgq,所以b(n+1)-bn=lgq是常数,所以{bn}是等差数列

等比数列{an}前n项和为Sn,S3=14,S6=126求通项公式.求数列{lgan}前n项

S3=14,S6=126[a1(1-q^3)]/(1-q)=14(1)[a1(1-q^6)]/(1-q)=126(2)(2)/(1)[(1-q^3)(1+q^3)]/(1-q^3)=1+q^3=9q=

已知数列{an}满足:lgan=3n+5,试用定义证明{an}是等比数列

lgan=3n+5an=10^(3n+5)a(n+1)=10^(3n+8)a(n+1)/an=10^3所以an是等比数列

“数列{an}是各项为正的等比数列”是“数列{lgan}是等差数列”的_____条件

数列{lgAn}是等差数列的话,lg(An+1/An)=定值,那么An+1/An为定值正数,所以,An+1与An要么两者皆正,要么两者皆负.如此的话,应为充分条件.(或充分不必要条件)

已知数列{An}满足lgAn=3n+5,证明An是等比数列.

lgAn-lgA(n-1)=lg[An/A(n-1)]=3n+5-3(n-1)-5=3所以An/A(n-1)=1000所以是等比数列再问:谢了袄哥们再答:不谢,要互相帮助

已知数列{an}满足:lgan=3n+5,试用定义证明{an}是等比数列 lgan=3n+5

a(n+1)/an=10∧[(3n+8)-(3n+5)]=10∧3再问:那为什么a(n-1)=10^(3n+2)回答这个之后马上好评求解!!再问:或者a(n+1)=10^(3n+8)再问:懂了!!

数列{An},其中An=8(1/2)^(n-1),若Mn=lgA1+lgA2+……+lgAn,求Mn最大值和此时n的值

An=8(1/2)^(n-1)=(1/2)^(n-4)=2^(4-n)∴lgAn=(4-n)lg2∴Mn=[4n-(1+2+3+……+n)]lg2整理得Mn=(7n-n^2)/2*lg2=[-(n^2

已知等比数列{an}的各项都是正数,证明数列{lgan}为等比数列,若a1×a10= :根号10,求lga1+lga2+

为等差吧{an}是等比数列所以an^2=an+1×an-1lgan^2=lg(an+1×an-1)2lgan=lgan+1+lgan-1{lgan}是等差数列Lga1+…lga10=lg(a1×.a1

数列{an}、{bn}分别为正项等比数列,Tn,Rn分别是数列{lgan}{lgbn}的前n项和,且Tn/Rn=n/2n

数列{an}、{bn}分别为正项等比数列,数列{lgan}{lgbn}是等差数列Tn/Rn=n/2n+1则假设Tn=k*n^2,Rn=k*n*(2n+1)k>0lgan=k*(2n-1)lga5=9k

正项等比数列{an} ,a1=10,又bn=lgan,且数列{an}的前七项和S7最大,S7不等于S8,求{an}公比q

是{bn}的前7项的和S7最大吧?再问:也许吧。帮我做一下吧再答:因为{an}为正项等比数列,bn=lgan,所以{bn}为等差数列,b1=lg10=1,{bn}的前n项和为sn,sn=nb1+n(n

已知数列an是首项为3,公比为2的等比数列,bn=lgan 证明bn是等差数列,并求出它的通项公式 千恩万谢

an=3*2^(n-1)bn=lg3*2^(n-1)=lg3+lg2^(n-1)=lg3+(n-1)lg2bn-1=lg3+(n-2)lg2d=bn-bn-1=lg2

{lgan}是等比数列,则{an}是什么数列?

是等比数列.再问:怎么做?要过程再答:由题可设lgan+1-lgan=d则lg(an+1/an)=d(这是对数常用公式)所以(an+1)/an=10^d又因为d是常数,所以10^d是常数。而且an不等

设数列{an}的前n项和为sn,a1=10,an+1=9sn+10.设Tn是数列(3/(lgan)(lgan+1)}的前

a1=10an+1=9sn+10an=9sn-1+10an+1-an=9anan+1=10ana1=10an=10^nbn=3/[lg(an)lg(an+1)]=3/[(n)(n+1)]=3*[1/n

已知{an}是由正实数构成的数列,a1=3,且满足lg(an+1)=lgan+lgc,其中c为正常数.

因为lga(n+1)=lgan+lgc所以lga(n+1)-lgan=lgc所以lg[a(n+1)/an]=lgc所以a(n+1)/an=c所以{an}为等比数列若c=1则Sn=3n若c1则Sn=3(

已知数列{lgan}是首项为3,公差为2的等差数列,求证:{an}是等比数列.

{lgan}是首项为3公差为2lgan=3+2(n-1)=2n+1an=10^(2n+1)a1=10^3=1000q=10所以an为首项为1000公比为10的等比数列

设正数数列{an}为一等比数列,且a2=4,a4=16,求lim(lgan+1+lgan+2+...+lga2n)/n^

因为an>0,a2=4,a4=16所以q=2,a1=2所以lim(lgan+1+lgan+2+...+lga2n)/(n^2)=lim(n/2*lg(an+1*a2n))/(n^2)=lim(lg(a