数列{an}中,6sn=an²+3an+2,且a2,a4,a6成等比,求an
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 06:32:20
(1)数列{an}中,a1=1,前n项和Sn=n+23an,可知S2=43a2,得3(a1+a2)=4a2,解得a2=3a1=3,由S3=53a3,得3(a1+a2+a3)=5a3,解得a3=32(a
有前提条件:n大于等于2且n为自然数Sn不就是a1+a2+a3+……+anS(n-1)不就是a1+a2+a3+……+a(n-1)相减就是an
(Ⅰ):证明:∵Sn=12(n+1)(an+1)−1,∴Sn+1=12(n+2)(an+1+1)−1∴an+1=Sn+1−Sn=12[(n+2)(an+1+1)−(n+1)(an+1)]整理,得nan
摆动数列:1,-1,1,-1…为公比q=-1的等比数列,显然数列{Sn}中有无数项为零,故选:D
再问:……看不清楚……再答:你的放大不了?(I)由a1=S1=-(a1+1)(a1+2),解得a1=1或a1=2,由假设a1=S1>1,因此a1=2,又由an+1=Sn+1-Sn=-(an+1+1)(
∵2√Sn=an+1,∴Sn=(an+1)^2/4∴S(n-1)=(a(n-1)+1)^2/4两式相减,得到an=Sn-S(n-1)=1/4*(an^2-a(n-1)^2)+1/2*(an-a(n-1
由题意可得an=2Sn^2/(2Sn-1)又由于an=Sn-S(n-1)即Sn-S(n-1)=2Sn^2/(2Sn-1)化简得Sn+2SnS(n-1)-S(n-1)=0两边同除SnS(n-1)得1/S
(1)证明:∵Sn-2an=2n,①∴Sn+1-2an+1=2(n+1).②②-①,得:an+1-2an+1+2an=2,∴an+1=2an-2,∴an+1-2an-2=(2an-2)-2an-2=2
sn=n^2ans(n-1)=(n-1)^2*a(n-1)sn-s(n-1)=n^2an-(n-1)^2*a(n-1)=an(n^2-1)an=(n-1)^2a(n-1)(n+1)an=(n-1)a(
(1)当n=1时,a1=S1=13(a1−1),得a1=−12;当n=2时,S2=a1+a2=13(a2−1),得a2=14,同理可得a3=−18.(2)当n≥2时,an=Sn−Sn−1=13(an−
已知a_(n+1)=S_n得a_n=S_(n-1)(n>1)两式相减a_(n+1)-a_n=S_n-S_(n-1)=a_n(n>1)得a_(n+1)=2a_n(n>1)因为a_2=S_1=a_1=-2
An=3S(n-1).用原式减去,得A(n+1)-An=3An.A(n+1)=4An.则An为等比数列.
n≥2时an=Sn-S(n-1)=n²an-(n-1)²a(n-1)∴an/a(n-1)=(n-1)/(n+1)∴a2/a1=1/3a3/a2=2/4a4/a3=3/5……a(n-
An=6Sn/(An+3)6Sn=(An)^2+3Ann>=26S(n-1)=(A(n-1))^2+3A(n-1)6An=(An)^2+3An-(A(n-1))^2-3A(n-1)(An)^2-(A(
n+Sn=2an,所以1+s1=2a1=2s1即s1=a1=1且n+1+S(n+1)=2a(n+1)相减得1+a(n+1)=2a(n+1)-2ana(n+1)=2an+1a(n+1)+1=2an+2=
Sn=an^2a1=a1^2a1=1或a1=0S2=a2^21+a2=a2^2(a2-1/2)^2=5/4a2=1/2+√5/2或a2=1/2-√5/2Sn=an^2Sn-1=an-1^2an=Sn-
因为6Sn=(an+1)(an+2)(1)所以6Sn-1=(an-1+1)(an-1+2)(2)(1)-(2)则an-an-1=3所以an是等差数列因为6Sn=(an+1)(an+2)可知S1=a1=
等比数列中,有[a5]/[a2]=q³,则q³=27,q=3,所以a1=2,则:Sn=[a1(1-1^n]/(1-q)=3^n-1
因an是等比数列,所以a5=a2*q^3162=6q^3q=3a1=a2/q=6/3=2an=a1q^(n-1)=6*3^(n-1)=2*3^nsn=a1(1-q^n)/(1-q)242=2*(1-3