1000x 1 x^2无穷大的极限
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 11:37:10
[1+2+3+...+(n-1)]=n(n-1)/2[1+2+3+...+(n-1)]/n^2=(n-1)/2n=1/2-1/2nlim1+2+3+...+(n-1)/n的平方(n趋于无穷大)求它的极
先把n看做一个数n为偶数时候,原式去极限为:【(n-1)!/(n)!】*pi/2n为奇数时候,原式去极限为:【(n-1)!/(n)!】*1显然无论n奇偶,趋于无穷时候,极限均为0
1、这个例子最不好说,你最好去百度下.我举一个.11/21/4.211/2.421......每个极限都是0,但乘再一起是无穷大,注意连乘取的极限和整体取的极限是不可交换的,如果可交换,则无穷个无穷小
一楼.不要来丢人两种情况:1、数列的极限等于0,也就是整个数列的数字逐渐趋向于0.2、整个数列到后面全部都是0,完完全全地等于0.这两种都是无穷小,极限都存在极限等于无穷大的时候极限不存在.但是写的时
其实,“极限是无穷大”只是极限不存在的一种,是说找不到一个正数永远比这个函数的值(或绝对值)大.而“极限不存在”是指函数的自变量趋于某一值时,函数的值是不确定的,比如数列1-1+1-1+1...的和S
极限能拆开来求的前提是:拆开后分式的极限要存在.而明显(2n)的极限不存在(n趋向于无穷大),所以等式不成立.
令1/a=2/x则a→∞x=2a原式=lim(a→∞)(1+1/a)^2a=lim(a→∞)[(1+1/a)^a]²=e²
需要的.只是现在我们做的都是趋于正负无穷大时的极限相等.也有的是不相等.就像一些分段函数,就有在趋于正负无穷大时的极限是不相等的.考虑分段函数f(x)=e^x(x≤0);f(x)=1+1/x(x>0)
无穷小是0没错无穷大是没有极限的正负无穷大都是无穷大
趋于无穷大,一般采用倒数,这样就趋于0了,代值计算.
上下除以x原式=lim(1000/(1/x+x)分母趋于0所以原式=0再问:怎么写步骤?再答:哦,对不起,写错了是分母趋于无穷就是这样的
直接回答1就可以,因为在讨论极限的时候,我们说无穷大就默认为是趋近于正无穷大.所以当x趋近于正无穷时,1/x趋近于0,1+1/x趋近于1,那么根下1+1/x也就趋近于1了.
可以,只要你的两个分别求极限都是存在的就可以因为limA/B=limA/limB假如limA,limB都存在然后limC+A=limC+limAC为常数时显然就等于C+limA只是需要注意你的分开洛必
对!没错!1、无穷大是一个越来越大的过程,要多大有多大,没完没了的大下去,这是正无穷大;2、若趋向于负值,负值的绝对值也是没完没了的大下,要多大有多大,就是负无穷大;3、极限有趋向于一个固定值的情况,
0∞)a^n=1n^2+1/(n^3+a^n).[(n+1)^3+a^(n+1)]/[(n+1)^2+1]最大分子:n的次方=最大分母:n的次方=n^5系数(分子n^5)=系数(分母n^5)=1lim
典型的∞/∞==分子分母可以分别求导后的比值,(络必达准则)lim=A^n/n=ln(A)*A^n/1=∞
1、严格来说,极限无穷大是极限不存在.但是,我们经常自打耳光,例如,当x趋向于90度时,我们也会常常写成tanx的极限是无穷大.这样的例子举不胜举.2、极限是无穷大的数列确实是发散数列,发散是dive
这个是不一定的,要使用洛必达法则进行求解再问:讲讲给我再答:洛必达法则就是对分子分母分别进行求导之后再取极限http://baike.baidu.com/view/420216.htm
极限不存在,也不是无穷大