方程AX=0的基础解系含有两个线性无关的解向量,求t

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 07:13:23
方程AX=0的基础解系含有两个线性无关的解向量,求t
7.已知β1,β2是非齐次线性方程组Ax=b的两个不同的解,α1,α2是其导出组Ax=0的一个基础解系,C1,C2为任意

选A!非齐次线性方程组Ax=b的通解结构:γ=γ0+η,其中γ0是其一个特解,η是Ax=0的通解.A中,1/2(β1+β2)仍然是Ax=b的一个解,即特解γ0,C1α1+C2(α1+α2)=(C1+C

设β1、β2为线性方程组 AX=B的两个不同解α1.α2是对应的齐次线性方程组AX=0的基础解系,k1、k2为常数

直接加上β1或β2之一也是通解方程组的通解不是唯一的你这个题目像是选择题注意(β1+β2)/2也是特解,(3β1+4β2)/7也是特解(k1β1+k2β2)/(k1+k2)(k1+k2≠0)也是特解再

怎样解含有两个未知数的方程

迭代,先估计一个值代入计算,看另外一个值的差别.然后再估计依此类推

若三元齐次线性方程组AX=0的基础解系含两个解向量 则矩阵A的秩等于?

未知数的个数-基础解系中解向量的个数=系数矩阵的秩

设β1,β2是非其次线性方程组AX=b的两个不同解,a1,a2,a3是对应齐次线性方程组AX=0的基础解系,求AX=b通

选B.因为A中的三个向量a1-2a2+a3,-2a1+a2+a3,a1+a2-2a3线性相关.(这个相关性证明可由行列式1-21-21111-2的值为0得出.)

矩阵A=1212;01TT;1T01齐次线性方程组Ax=0的基础解析含有两个线性无关的解向量,试求方程组Ax=0的全部解

题目条件给的是Ax=0有两个线性无关解向量,所以,rank(A)=4-2=2,这里的4是未知数个数,即A的列向量个数,2是解向量组的秩.行变换化简A,可以得到T=1,这时A就变成一个已知矩阵了,你再解

a1,a2,a3是齐次线性方程组AX=0的一个基础解系,下列哪一组也是AX=0的基础解系

是不是基础解系看他是不是基就可以了,在3维的空间里面如果三个向量是线性无关的他就是这个空间的一个基,因为再加入一个向量肯定能够和他线性相关,假设得到的是b1,b2,b3线性无关,然后任意的d向量,b1

线性方程组AX=0的基础解系含有解向量的个数是多少?

A行初等变换,可得R(A)=1,即AX=0有n-1个自由变量,即基础解系含有n-1个线性无关的列向量.

设A为3*4矩阵,A的秩为3,设阿尔法1,阿尔法2为线性方程组的AX=0的两个不同的解向量,刚AX=0的基础解系为-

由已知,AX=0的基础解系含n-r(A)=4-3=1个解向量.而a1,a2是AX=0的不同解所以a1-a2是AX=0的非零解.所以a1-a2是AX=0的基础解系.(D)正确

求解答线性代数证明题:设a1.a2…as是方程AX=0的一个基础解系,而b1.b2…bs为该基础解系经施密特正交化得到的

根据施密特正交化,bi可以由(a1,a2,...,as)线性表述,也就是说存在k1,k2,...,ks使得bi=k1a1+k2a2+...+ksas所以Abi=k1Aa1+k2Aa2+...+ksAa

含有两个未知数的方程怎么解

一个方程,两个未知数,这样的方程有无数个解如果两个都是y那么5y-2y=1.53y=1.5y=0.5这是一个未知数啊

解含有两个未知数的方程!

X+y=25.[1]10x+8y=230.[2][1]*8:8x+8y=200.[3][2]-[3]:2x=30x=15y=25-x=10

非齐次方程的通解.已知B1,B2是Ax=b的两个不同的解,a1,a2是相应齐次方程组Ax=0的基础解系,k1,k2是任意

是不是特解只要代入验证满足Ax=b就行了A(B1+B2)/2=(AB1+AB2)/2=(b+b)/2=b是通解Ax=b选A不选B因为B1-B2是Ax=0的解(自验证)但是不能保证和a1不是线性无关的要

大学线性代数距阵A 他的伴随矩阵A*不等于0 非齐次方程AX=B有4个不同的解 问齐次方程AX=0有多少基础解系 不纯在

回去翻了翻课本,发现这道题不错(发现忘了不少知识):这里需要用到以下知识:rank(A*)=n(rank(n)=n),rank(A*)=1(rank(n)=n-1.rank(A*)=0(rank(n)

设a1、a2是AX=B的两个不同解,b1、b2是AX=0的基础解系,k1、k2为任意常数

k1b1+k2(b1-b2=k1b1+k2b1-k2b2=(k1+k2)b1+(-k2)b2k1,k2是任意常数,(k1+k2),(-k2)也是两个任意常数,所以(k1+k2)b1+(-k2)b2是A