方程x y z=2010满足的正整数解(,,)的个数是

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 05:20:40
方程x y z=2010满足的正整数解(,,)的个数是
XYZ满足XY/X+Y=-2,YZ/Y+Z=3/4,ZX/Z+X=-4/3,求XYZ/XY+YZ+ZX的值

xy/x+y=-2,取倒数得1/x+1/y=-1/2①yz/y+z=3/4取倒数得1/y+1/z=4/3②zx/z+x=-3/4取倒数得1/x+1/z=-4/3③①+②+③得2(1/x+1/y+1/z

若xyz不等于0,且满足(y+z)/x=(x+z)/y=(x+y)/z,求(y+z)(x+z)(x+y)/xyz的值

设(y+z)/x=(x+z)/y=(x+y)/z=k;y+z=kx;x+z=ky;y+z=kx;2(x+y+z)=k(x+y+z);k=2或x+y+z=0;所以,(y+z)(x+z)(x+y)/xyz

设XYZ为正实数,满足X_2Y+3Z=0则Y2(Y方)/ZX的最小值是.

x-2y+3z=02y=x+3z平方因为XYZ为正实数4y2=x2+6xz+9z2=x2+9z2+6xz>=2√(x2*9z2)+6xz=6xz+6xz=12xzy2>=3xzy2/zx>=3则Y2(

1.已知x,y,z均为正实数,且满足条件xyz(x+y+z)=1,则(x+y)(y+z)的最小值为_____.

xyz(x+y+z)=1y^2+(x+z)y-1/xz=0y=0.5(sqrt((x+z)^2+4/xz)-(x+z))(因为y>0)(x+y)(y+z)=0.25(sqrt(x+z)^2+4/xz)

若正实数xyz满足x+y+z=4 xy+yz+zx=5 则x+y的最大值是!

设t=x+y.∵x+y+z=4,∴z=4-(x+y)=4-t.又∵xy+yz+zx=5,∴xy=5-z(x+y)=5-zt=5-(4-t)t=5-4t+t².根据均值不等式,xy≤(x+y)

设正实数xyz满足x2-3xy+4y2-z=0,则当(xy)/z取得最大值时,2/x+1/y-2/z的最大值为

由x2-3xy+4y2-z=0可得x2-3xy+4y2=z,代入(xy)/z得到关于x,y的式子:(xy)/(x^2-3xy+4y^2),因为x,y均不为零,所以分子分母同除以xy,得:1/A,A=x

已知X,Y,Z都是非零有理数,且满足|X|/X+|Y|/Y+|Z|/Z=1.请你求XYZ/|XYZ|的值

因为|a|/a不是等于1就是-1,故|X|/X+|Y|/Y+|Z|/Z=1代表其中XYZ中有两个大于0,一个小于0故XYZ/|XYZ|=-1

正实数x,y,z满足9xyz+xy+yz+zx=4,求证:

证 (1)记t=xy+yz+xz3,∵x,y,z>0.由平均不等式xyz=(3xy•yz•xz)32≤(xy+yz+zx3)32于是4=9xyz+xy+yz+xz≤9t3+3t2,∴(

已知正实数xyz满足3的x次方=4的y次方=6的z次方,求证:1/z-1/x=1/2y

3^x=4^y=6^zln(3^x)=ln(4^y)=ln(6^z)xln3=yln4=zln6xln3=2yln2=z(ln2+ln3)设xln3=2yln2=z(ln2+ln3)=tln3=t/x

设x,y,z为正实数,且x+y+z>=xyz,求x^2+y^2+z^2/xyz的最小值

化成齐次式((x^2+y^2+z^2)/xyz)^2>=(xx+yy+zz)^2/((x+y+z)xyz)xx+yy+zz>=1/3*(x+y+z)^2x+y+z>=3(xyz)^(1/3)xx+yy

已知XYZ满足X-Y=8,XY+Z的平方=-16,试求XYZ的值

根据已知条件可知,将X=Y+8代入XY+Z^2=-16中,得到:Y(Y+8)+Z^2=-16Y^2+8Y+16+Z^2=0(Y+4)^2+Z^2=0因为(Y+4)^2和Z^2均是大于等于0的非负数,非

若实数xyz满足(x-z)²-4(x-y)(y-z)=0,则xyz之间的关系是怎样的

原等式可变为:(x-y+y-z)^2-4(x-y)(y-z)=0=>(x-y)^2+2(x-y)(y-z)-4(x-y)(y-z)+(y-z)^2=0=>(x-y-y+z)^2=0由实数平方大于等于0

设正实数x,y,z满足x2-3xy+4y2-z=0,则当xyz

由正实数x,y,z满足x2-3xy+4y2-z=0,∴z=x2-3xy+4y2.∴xyz=xyx2−3xy+4y2=1xy+4yx−3≤12xy•4yx−3=1,当且仅当x=2y>0时取等号,此时z=

设x,y,z是正实数,满足xy+z=(x+z)(y+z),则xyz的最大值是______.

∵xy+z=(x+z)(y+z),∴z=(x+y+z)z∴x+y+z=1故xyz≤[13(X+Y+Z)]3=127当且仅当 x=y=z=13取等号即xyz的最大值是127;

设正实数xyz满足x^2-3xy+4y^2-z=0则当z/xy取最小值时,x+2y-z的最大值为多少?

2你的好评是我前进的动力.我在沙漠中喝着可口可乐,唱着卡拉ok,骑着狮子赶着蚂蚁,手中拿着键盘为你答题!再答:请采纳哦~O(∩_∩)O再问:在三角形ABC中,若向量AB与向量AC的数量积等于7,|AB

已知xyz都是正整数,且满足x^2+y^2=10,y^2+z^2=13,求xyz的值

10=1+9=1^2+3^213=4+9=2^2+3^3可见,y=3x=1z=2

已知x.y.z是正实数,且xyz=1,则,的最小值为?

(x+y)(y+z)=y^2+y(x+z)+xz=y(x+y+z)+xz,由题设y(x+y+z)=1/xz,原式=xz+1/xz>=2,取等号时,xz=1,y(x+y+z)=1,不防令x=z=1,y(

已知正实数xyz满足3的x次方=4的y次方=6的z次方,求证:1/z-1/x=1/zy

3^x=4^y=6^zln(3^x)=ln(4^y)=ln(6^z)xln3=yln4=zln6xln3=2yln2=z(ln2+ln3)设xln3=2yln2=z(ln2+ln3)=tln3=t/x

已知正实数x,y,z,满足xyz=1.求代数式(x+1)(y+1)(z+1)的最小值

因为xyz=1,所以z=1/(xy),带入到代数式,得:2+(x+1/x)+(y+1/y)+[xy+1/(xy)];在以上3个括号中两个正数积为1,显然他们相等时和最小;所以有x=1/x;y=1/y;

已知有理数xyz 满足|x-z-2|+(3x-6y-7)的二次方+|3y+3z-4|=0 ,求xyz的值.

x-z-2=0,3x-6y-7=0,3y+3z-4=0,解得x=-1,y=-5/3,z=-3再问:过程再答:因为|x-z-2|+(3x-6y-7)的二次方+|3y+3z-4|=0,而|x-z-2|≥0