方程z^3-2xz y=0确定z=z(x,y)
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 13:47:07
x²+y³-xyz=0,z=(x²+y³)/(xy)=x/y+y²/x;故z/x=1/y+y²/x²z/y=x/y²+y
1、对X求导(导数符号无,用“£”代替)两边对x求导有:2x2z£z/£x=-ycos(z/x)/x^2*£z/£x:化简得:£z/£x=-2x/[2zycos(z/x)/x^2]:2、对y求导两边求
对方程两边求全微分得:(e^z-1)dz+y^3dx+3xy^2dy=0(方法和求导类似)移项,有dz=-(y^3dx+3xy^2dy)/(e^z-1)
e^z-z+xy^3=0偏z/偏x:z'e^z-z'+y^3=0y^3=z'(1-e^z)z'=y^3/(1-e^z)偏z/偏y:z'e^z-z'+3xy^2=0z'=3xy^2/(1-e^z)偏z/
方程x^2-z^2+lny-lnz=0两端对x求导得2x-2zz'x-z'x/z=0z'x=2x/(2z+1/z)两端对y求导得-2zz'y+1/y-z'y/z=0z'y=1/[y(2z+1/z)]因
x^2+y^2+z^2-3xyz=0两边对x求偏导,2x+2z*dz/dx-3yz-3xydz/dx=0从中解得:dz/dx=(3yz-2x)/(2z-3xy)(1)同理:dz/dy=(3xz-2y)
首先令(x,y,z)=x^3+y^3+z^3-3xyzgx=3x^2-3yzgz=3z^2-3xyzx=-(gx/gz)=-(3x^2-3yz)/(3z^2-3xy)=-(x^2-yz)/(z^2-x
∵复数z满足方程z2-2z+3=0,∴z=2±22i2=1±2i∴|z|=1 2+(±2) 2=3.故答案为3
令z=x+iy代入方程:x^2+2ixy-y^2-3√(x^2+y^2)+2=0虚部=2xy=0,得:x=0ory=0实部=x^2-y^2-3√(x^2+y^2)+2=0x=0时,实部=-y^2-3|
x^2+y^2+z^2+4z=02xdx+2ydy+2zdz+4dz=0(2z+4)dz-2xdx-2ydydz=(-2xdx-2ydy)/(2z+4)
两端对x求偏导得:-ye^(-xy)-2(z/x)+(z/x)e^z=0,所以,z/x=ye^(-xy)/(e^z-2)两端对y求偏导得:-xe^(-xy)-2(z/y)+(z/y)e^z=0,所以,
x+2y-z=3e^(xy-xz)两边对x求导,z看成是x的函数求偏导得,y看成常数,得1-əz/əx=3(y-z-xəz/əx)e^(xy-xz)=><
z^2=-2z=根号下2iz^3=-2根号下2i无法打出根号请见谅我错了.应该z=正负根号下2i有待提高,有待提高,请见谅
两边对x求偏导:2xz^3+x^2*3z^2Z'x+2y^2*2z*Z'x-2x=0,得:Z'x=(2x-2xz^3)/(3x^2z^2+4y^2z)两边对y求偏导:x^2*3z^2*Z'y+4yz^
y^3z^2-x^2+xyz-5=0等式两边同时对x求导:∂z/∂x=(2x-yz)/(2zy^3+xy)等式两边同时对y求导:∂z/∂y=-(3y
公式输入了好半天,希望可以看懂哈!另外,可以不用辅助函数,直接利用已知等式计算求导.
x+2y+z=e^(x-y-z)两边对x求偏导注意到z=z(x,y)1+z'=e^(x-y-z)*(1-z')...(1)再对x求偏导z"=e^(x-y-z)(1-z')^2-z"e^(x-y-z).
首先du/dx=z+x*dz/dx而Z=Z(x,y)由方程x²z+2y²z²+y=0确定,对x求导得到2xz+x²*dz/dx+2y²*2z*dz/d
(x-4)2次方+1/4|x+y-z|=0x=4,x+y-z=0z-y=45x+3y-3z=20-3(z-y)=20-3*4=8(5x+3y-3z)2008次方=8^2008=4096^502末位是6