旋转成分矩阵和因子载荷矩阵
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 08:57:48
一般是考虑大于0.4的,你的0.33因为1除以3啊
对于一般的可逆复矩阵来讲这个要求是做不到的,在QR分解当中只能要求上三角矩阵的对角元是实的(可以是正的),但不能要求整个上三角阵都是实的,因为QR分解本质上是唯一的.比如说1i2i3可逆,但不可能有满
这个很容易,看来你不会用SPSS呀,在SPSS中运用因子分析功能,只是这不是三言两语能说明白的,建议借本这方面的书来看,
analyze(分析)->DimensionReduction(降维)->factor(因子分析)->选中variables(变量)->extraction(抽取)->correlationmatri
的检验是为了检验是否适合做因子分析,一般来说KMO的值越接近于1越好,大于0第三个表是旋转因子载荷,是为了方便对提取的两个公因子命名,旋转后,第一再问:请问这和KMO检验有什么关系呢?我是在旋转因子求
Rotatingcomponentmatrix
解题思路:若向量a经过矩阵A变换后所得的向量为b(写成列向量),则b=Aa;本题中的A是单位矩阵,它对应的变换为“恒等变换”(即变换A将任一向量变换为自身).解题过程:解答见附件。最终答案:(2,3)
未旋转的因子矩阵:不是说x7是最主要的因素,而是说x7与第1个成分的相关性最大,且为正相关.通过你这个因子矩阵表,很难将各个x进行分类,可以进行因子分析,得到旋转后的因子矩阵.旋转后的因子矩阵:表中的
因子载荷阵选择适当方法求出旋转后的载荷阵数值出负是求解的结果……这和原始矩阵数值以及计算方法相关,没什么原因解释的吧?比如因子旋转有正交和斜交两种方法,比较常用的是正交变换,正交矩阵的选取不一不说,符
因子载荷矩阵里,最左一列是项目(题目),最上一行是因子(主成份),下面就是各项目在各因子上的载荷,载荷按高到低排好序就可以看出各因子包括哪些项目.
对的,每一列下面比较大的归为一类就行了
analysis-datareduction-factor-extraction下自己选择分析方法
额.楼主手边有spss操作参考书吗?如果操作步骤是按照书上做的同时也符合你的分析要求的话应该不会出问题吧~我的spss只是半吊子不能完美解释介个问题哦.见谅.找了一些旋转结果的分析看出现负值好像没什么
你自己根据各个因子中哪个或哪些变量的系数大来命名即可
用直交旋转的图直交旋转后因素解释更为显著
你看看吧满啰嗦的
从你得到的结果老看,数据之间的相关性较小,不适合做主成分分析,并且可能你的变量太多,数据过少导致很多数值没有.
你肯定是选择了正交或斜交旋转才会产生“旋转成分矩阵”,你可以用主成分分析法来做一下就会发现没有“旋转成分矩阵”了,所以两者是没有关系的,因为“成分矩阵”是主成分分析法得到的,“旋转成分矩阵”是因子分析
在科学研究或日常生活中,常常需要判断某一事物在同类事物中的好坏、优劣程度及其发展规律等问题.而影响事物的特征及其发展规律的因素(指标)是多方面的,因此,在对该事物进行研究时,为了能更全面、准确地反映出
因子载荷a(ij)的统计意义就是第i个变量与第j个公共因子的相关系数即表示X(i)依赖F(j)的份量(比重).统计学术语称作权,心理学家将它叫做载荷,即表示第i个变量在第j个公共因子上的负荷,它反映了