无向图G有7个顶点,若不存在由奇数条边构成的简单回 路,则它至多有
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 12:00:44
找规律的方法:画出度为3的树的最简单形式,计算每增加一个度为3的节点同时增加几个叶子节点可知:2n-1=leaf(n为度为3的节点数,leaf为叶子节点数)所以当n=3时,leaf=2*3-1=5
假设有a个5度点,b个6度点,c个7度点.顶点的个数就是100+60+50+22+a+b+c=232+a+b+c;边的个数的两倍是100+2*60+3*50+4*22+5a+6b+7c=458+5a+
n个顶点度数为d(xi)(1≤i≤n)则d(xi)可以取0,1,2...,n-1可以取n个不同的值若存在d(xi)=0则不可能存在d(xi)=nn个d(xi)取n-1个不同的值由鸽笼原理必有d(xm)
就是9个这个可以构造性的方法来说明构造:这样的图至少有9个顶点证明:假设有8个顶点,则8个顶点的无向图最多有28条边且该图为连通图连通无向图构成条件:边=顶点数*(顶点数-1)/2顶点数>=1,所以该
用扩大路径法,随意选取一个点,每需和其他一个点连接需要至少一条边,因为他是连通图,所以至少有N-1条边,只有N-1条边的时候每条边都是桥所以可知他就是一棵树
3*3+2*2+x=(3+2+x-1)*2x=5T有5片树叶再问:=后面的式子为啥减1??再答:边数等于结点数减1再问:谢谢你了,能不能也解答一下我另一个问题,谢谢了哈
设连通图G有(n+1)个顶点,若每个顶点连出至少两条边,那么此时至少有n+1条边(任意图上所有顶点度数和等于边数的两倍),结论已经成立.否则,那么至少有一个顶点只连出一条边.不妨设为A,由于去掉这条边
首先证明G中有割点,则G不是汉密尔顿图,反证法,如果图G是汉密尔顿图,则必存在汉密尔顿圈(回路),即所有结点均在一个回路中,此时删除任意一个结点图G必连通,于是它的任何点均不是割点,矛盾,即有割点的图
无向连通图奇点的个数k一定为偶数,因此要想把G变成无奇点的图,至少需要加k/2条边.
离散数学的问题也在文学里面问吗e=v-1e是边数,V是结点数,假设4度的顶点的个数为X树(图)还有一个定理:所有结点的度数之和为边数的两倍6片树叶,度数是1所以:6+12+4X=2V-2=2*(6+4
反证法.假设所有顶点的度数最多为2,则度数总和D≤2n≠2(n+1),与握手定理矛盾.
这个题目涉及到了两个主要的知识点,一个是数据结构中的有向图的邻接矩阵的typedefstruct{verv[n];//顶点edge[n][n];//边权}graph
#include<stdio.h>#include<stdlib.h>#include<conio.h>#include<malloc.h>#defin
#include#include#include#includeusingnamespacestd;constintMaxVertices=10;constintMaxWeight=10000;cla
正确,能够拓扑排序的一定是有向无环图
(1)1级不能上传图,我给你描述下吧--先画一个五边形,5个顶点依次标为A,B,D,C,E(注意是D,C不是C,D)然后将D和E连起来最终是6条边,AB,BD,DC,CE,EA,ED(2)深度(5种)
G其实就是树.首先,如果G中每对顶点间具有唯一的通路,那么G当然是连通的.选取G的一个顶点,记为第1层顶点,所有和第一层顶点相邻的顶点记为第2层顶点,如此等等.主要到每个第n+1层的顶点都与一个第n层
这个其实很好办的,在有向图的基础上,作如下修改.创建有向图的过程中,用一个数来表示是否相连,可以设置weight为1或0.可以在确定一条弧的两个顶点后,locate其位置后将其的权值定为1或0,1表示