无向图中有两个度相同的顶点
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 01:52:39
找规律的方法:画出度为3的树的最简单形式,计算每增加一个度为3的节点同时增加几个叶子节点可知:2n-1=leaf(n为度为3的节点数,leaf为叶子节点数)所以当n=3时,leaf=2*3-1=5
n个顶点度数为d(xi)(1≤i≤n)则d(xi)可以取0,1,2...,n-1可以取n个不同的值若存在d(xi)=0则不可能存在d(xi)=nn个d(xi)取n-1个不同的值由鸽笼原理必有d(xm)
一个顶点就是一个表头,共有N个顶点,则共有N个表头,即共有N个表头向量,因为邻接表顶点数就是图的定点数,故临界表顶点数也是N建议首先把定义搞懂
3*3+2*2+x=(3+2+x-1)*2x=5T有5片树叶再问:=后面的式子为啥减1??再答:边数等于结点数减1再问:谢谢你了,能不能也解答一下我另一个问题,谢谢了哈
1.真.2.假.3.4.5.真.6.假7.假.8.假.9.假.10.假.11.真.12.13.14.15.仅供参考
无向连通图奇点的个数k一定为偶数,因此要想把G变成无奇点的图,至少需要加k/2条边.
离散数学的问题也在文学里面问吗e=v-1e是边数,V是结点数,假设4度的顶点的个数为X树(图)还有一个定理:所有结点的度数之和为边数的两倍6片树叶,度数是1所以:6+12+4X=2V-2=2*(6+4
解设树有片树叶,则的节点数的边数又由得所以,即树有9片树叶.显示不了你打开看啊超级解题专家
反证法.假设所有顶点的度数最多为2,则度数总和D≤2n≠2(n+1),与握手定理矛盾.
这个题目涉及到了两个主要的知识点,一个是数据结构中的有向图的邻接矩阵的typedefstruct{verv[n];//顶点edge[n][n];//边权}graph
#include"utility.h"#include"adj_matrix_undir_graph.h"#include"adj_list_dir_graph.h"#include"dfs.h"#i
#include#include#include#includeusingnamespacestd;constintMaxVertices=10;constintMaxWeight=10000;cla
(1)1级不能上传图,我给你描述下吧--先画一个五边形,5个顶点依次标为A,B,D,C,E(注意是D,C不是C,D)然后将D和E连起来最终是6条边,AB,BD,DC,CE,EA,ED(2)深度(5种)
G其实就是树.首先,如果G中每对顶点间具有唯一的通路,那么G当然是连通的.选取G的一个顶点,记为第1层顶点,所有和第一层顶点相邻的顶点记为第2层顶点,如此等等.主要到每个第n+1层的顶点都与一个第n层
这个其实很好办的,在有向图的基础上,作如下修改.创建有向图的过程中,用一个数来表示是否相连,可以设置weight为1或0.可以在确定一条弧的两个顶点后,locate其位置后将其的权值定为1或0,1表示
错误,对顶角都是由从一个点延伸出来的射线形成的
//quee是线性表Biao是邻接表如果Biao[i]直接声明为quee那么可以去掉.tail下面大概是算法具体实现可根据需要修改for(i=0;i<n;i++)Biao[i].tail=nil