无向图中有两个度相同的顶点

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 01:52:39
无向图中有两个度相同的顶点
设无向树T有7片树叶,其余顶点度数均为3,则T中3度顶点有( )个.

找规律的方法:画出度为3的树的最简单形式,计算每增加一个度为3的节点同时增加几个叶子节点可知:2n-1=leaf(n为度为3的节点数,leaf为叶子节点数)所以当n=3时,leaf=2*3-1=5

1.证明在具有n个顶点的简单无向图G中,至少有两个顶点的度数相同.

n个顶点度数为d(xi)(1≤i≤n)则d(xi)可以取0,1,2...,n-1可以取n个不同的值若存在d(xi)=0则不可能存在d(xi)=nn个d(xi)取n-1个不同的值由鸽笼原理必有d(xm)

对于一个具有N个顶点E条边的无向图的邻接表的表示,则表头向量大小为多少?邻接表的顶点总数为多少?(请给出详细的分析过程)

一个顶点就是一个表头,共有N个顶点,则共有N个表头,即共有N个表头向量,因为邻接表顶点数就是图的定点数,故临界表顶点数也是N建议首先把定义搞懂

大学离散数学:设无向树T有3个3度,2个2度顶点,其余顶点都是树叶,问T有几片树叶?

3*3+2*2+x=(3+2+x-1)*2x=5T有5片树叶再问:=后面的式子为啥减1??再答:边数等于结点数减1再问:谢谢你了,能不能也解答一下我另一个问题,谢谢了哈

离散数学判断题1.无向图中顶点间的连通关系是一种等价关系.2.“若2+3

1.真.2.假.3.4.5.真.6.假7.假.8.假.9.假.10.假.11.真.12.13.14.15.仅供参考

连通无向图G有k个奇顶点,如果把G变成无奇顶点的图,则在G中至少需要 加___ ___条边

无向连通图奇点的个数k一定为偶数,因此要想把G变成无奇点的图,至少需要加k/2条边.

设无向树T有3个3度、3个4度、2个2度定点,其余顶点都是树叶,问该树有几片树叶?

离散数学的问题也在文学里面问吗e=v-1e是边数,V是结点数,假设4度的顶点的个数为X树(图)还有一个定理:所有结点的度数之和为边数的两倍6片树叶,度数是1所以:6+12+4X=2V-2=2*(6+4

一棵无向树有两个2度顶点,一个3度顶点,三个4度顶点,则它的树叶数为

解设树有片树叶,则的节点数的边数又由得所以,即树有9片树叶.显示不了你打开看啊超级解题专家

设一个无向图G=(V,E)有n个顶点n+1条边,证明G中至少有一个顶点的度数大于或等于3.

反证法.假设所有顶点的度数最多为2,则度数总和D≤2n≠2(n+1),与握手定理矛盾.

数据结构:n个顶点无向图 用邻接矩阵表示 图中有多少条边~怎么判别~很苦恼~

这个题目涉及到了两个主要的知识点,一个是数据结构中的有向图的邻接矩阵的typedefstruct{verv[n];//顶点edge[n][n];//边权}graph

设汁一个算法,建立无向图(n个顶点,e条边)的邻接表

#include#include#include#includeusingnamespacestd;constintMaxVertices=10;constintMaxWeight=10000;cla

是数据结构试题、一直一个无向图的顶点集为{a b c d e} 由邻接矩阵画出该图的图形

(1)1级不能上传图,我给你描述下吧--先画一个五边形,5个顶点依次标为A,B,D,C,E(注意是D,C不是C,D)然后将D和E连起来最终是6条边,AB,BD,DC,CE,EA,ED(2)深度(5种)

无向图G=,且|V|=n,|e|=m,试证明以下两个命题是等价命题:G中每对顶点间具有唯一的通路,G连通且n=m+1

G其实就是树.首先,如果G中每对顶点间具有唯一的通路,那么G当然是连通的.选取G的一个顶点,记为第1层顶点,所有和第一层顶点相邻的顶点记为第2层顶点,如此等等.主要到每个第n+1层的顶点都与一个第n层

求数据结构算法,已知有m个顶点的无向图,采用邻接矩阵结构储存,写出下列算法

这个其实很好办的,在有向图的基础上,作如下修改.创建有向图的过程中,用一个数来表示是否相连,可以设置weight为1或0.可以在确定一条弧的两个顶点后,locate其位置后将其的权值定为1或0,1表示

判断“顶点相同,且角相等的两个角是对顶角”是否正确,并说明理由.

错误,对顶角都是由从一个点延伸出来的射线形成的

1.给出一个无向图的邻接矩阵,输出各个顶点的度,要程序!

//quee是线性表Biao是邻接表如果Biao[i]直接声明为quee那么可以去掉.tail下面大概是算法具体实现可根据需要修改for(i=0;i<n;i++)Biao[i].tail=nil