无穷级数n(n-1)

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 07:58:35
无穷级数n(n-1)
级数n从1到无穷 ln(n*sin(1/n))判断敛散性

泰勒级数展开,sin(1/n)~=1/n-(1/n)^3/6=1/n-6/n^3,所以nxsin(1/n)~=1-6/n^2,所以ln(nxsin(1/n))~=-6/n^2,所以求和是收敛的,因为1

高数题,级数部分.1.判断敛散性∑n=1到无穷,n/n^2-2

从第二项开始,n/(n²-2)>1/n,从1/n发散可以知道该数列发散

高数 判定级数收敛性∑(n=1到无穷)ln(n/(n+1))

级数通项un=ln(n/(n+1))lim(n→无穷)un=lim(n→无穷)ln(n/(n+1))=lim(n→无穷)ln(1/(1+1/n))=0因为sn=ln(1/(n+1))所以S=lim(n

n从1到无穷,n^2/n!级数求和

经济数学团队为你解答,有不清楚请追问.请及时评价.再问:得出e^x这一步可以写详细点吗再答:

无穷级数的求和问题无穷级数的求和函数∑(=1,∞)n*x^(n+1),

现在回答还有分吗?再问:有啊再答:

级数n/(n+4)(n+5) n从1到无穷 的和是多少?

少了一个括号吧?应该是n/[(n+4)(n+5)]S=1/(5*6)+2/(6*7)+3/(7*8)+.=(1/5-1/6)+2(1/6-1/7)+3(1/7-1/8)+.=1/5-1/6+2/6-2

判定级数n=1-无穷,2^n*n!/n^n 的收敛性

利用根式判别法,lim(n→∞)(2^n*n!/n^n)^(1/n)=lim(n→∞)(2*(n!)^(1/n))/n=2/e<1,所以原级数收敛.

高数 判断级数收敛性∑(n=1到无穷)(根号(n+1)-根号n)

解:因为sn=根号(n+1)-1所以s=lim(n→无穷)sn=lim(根号(n+1)-1)不存在所以该函数收敛

(-1)^n/(2n+1)的无穷交错级数求和

直接在arctanx的Maclaurin展开当中代x=1即可楼上的做法也是对的,只不过需要引进虚数及Euler公式了

判断级数收敛性 n从1到无穷 tan π/(n^3+n+1)^1/2

tanπ/(n^3+n+1)^1/2等价于π/(n^3+n+1)^1/2而lim[π/(n^3+n+1)^1/2]/n^(3/2)=π即Σπ/(n^3+n+1)^1/2和Σ1/n^(3/2)具有相同的

讨论级数 (-1)^n * ln(1+n) / (1+n) (n由1到正无穷的级数)的敛散性,

设y=ln(1+x)/(1+x)(x>2)因y'=[1-ln(1+x)]/(1+x)^21/n而∑1/n发散,故原级数不是绝对收敛

无穷级数 根号n-1/4的根号下(n^2+n)的敛散性

级数Σ√(n-1)/(n^2+n)^(1/4)是发散的.事实上,因    √(n-1)/(n^2+n)^(1/4)=√(1-1/n)/(1+1/n^2)^(1/4)→1≠0(n→∞),据级数收敛的必要

判别级数∑(1到正无穷)[(-1)^n*√n]/(n-1)的收敛性

收敛.这是交错级数,由Leibniz准则,后项绝对值小于前项绝对值(可有二者作商平方比较出),然后一般项绝对值极限为零,所以可判定其收敛再问:有没有具体过程啊。。。再答:首先它是交错级数,那(-1)^

n=0到无穷,级数1/n-e^-n^2收敛性

1/n发散,e^-n^2收敛,所以整个级数发散e^-n的收敛性是很强的,强于所有的p级数

无穷级数求和1/(2n)!,从n=1到无穷

令s(x)=Σ1/(2n!)x^2n=1/2!x²+1/4!x^4+1/6!x^6+.s'(x)=1/1!x+1/3!x³+1/5!x^5+.s''(x)=