无穷级数敛散性判断 sin cos n 6
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 17:21:07
泰勒级数展开,sin(1/n)~=1/n-(1/n)^3/6=1/n-6/n^3,所以nxsin(1/n)~=1-6/n^2,所以ln(nxsin(1/n))~=-6/n^2,所以求和是收敛的,因为1
从第二项开始,n/(n²-2)>1/n,从1/n发散可以知道该数列发散
数列极限里面的一个重要极限啊,lim(n→∞)(1+1/n)^n=e.再问:谢谢!您觉得记性不大好怎么办?我大一,前面几节的一些公式定理总是很快就忘掉,我的同学却不这样=(
lim((n+1)+1)/3^(n+1)/((n+1)/3^n)=lim(n+2)/(3(n+1))=1/3
收敛.因为1/n√n+1和1/n的2分之3次方等价而Σ1/n^(3/2)收敛所以原级数收敛.再问:再问:谢谢,能不能再帮我看一题再答:发散可以分成2个级数前面收敛,后面的发散所以发散。再问:我想知道前
楼主题目写错了吧.是不是:∑sin(π倍根号(n*n+a))如果是的话,那就是个经典老题了.∑sin(π倍根号(n*n+a))=∑sin(π倍根号(n*n+a)-nπ+nπ)nπ提出来,变成(-1)^
令u_n=1/lnn,则{u_n}单调递减趋于0.所以这个级数是Leibniz型级数,一定收敛.该级数条件收敛,因为∑u_n是不收敛的,这是因为u_n>1/n,而∑1/n发散
再问:对数公式你记错了兄弟再答:信不信随你再问:答案是发散的再答:要是还是有疑惑,可以去翻书,但不要随便否定再问:再问:再问:不是随便否认的再答:是我错了再答:再问:哦比较法再答:嗯再问:再问:用分布
∑(n=0,∝)2^nsin(π/3^n)当n趋于无穷大时sin(π/3^n)~π/3^n所以∑(n=0,∝)2^nsin(π/3^n)与∑(n=0,∝)2^n(π/3^n)=∑(n=0,∝)π(2/
一开始以为必定是发散的,证了半天没得到结论.后来才发现这题太复杂了.不知lz是从哪儿得到的题?记级数通项是bn,则bn/b(n+1)=【(n+1)a+a(n+1)】/(n+1)a=1+a(n+1)/(
再问:如果两个级数相比的极限等于1其中一个级数收敛另外这个级数也收敛是这样么再答:是的,比较法就是这样的。
用比较判别法的极限形式,该级数收敛.经济数学团队帮你解答.请及时评价.
用反证法:若Σa(2n-1)收敛,则因Σa(2n)收敛,得知Σ[a(2n-1)+a(2n)]收敛,而Σa(n)是正项级数,因而是收敛的,矛盾.故Σa(2n-1)发散. 该题应选D.
根号下写成[(2n-2/3)+2/3]/(3n-1),后面就没有然后了,我已经睡了,只凭大脑转不过来再问:再问:睡等。。。再答:根号下能再写成1+1/21+1/5,只求敛散性的话,就能判断了吧,毕业了
不收敛反了,需要的是u(n+1)/u(n)的极限存在且极限在-1到1之间或u(n)/u(n+1)的极限小于1(等于1都不行)
再问:懂了,谢谢啊