cos(Inx)dx
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 18:08:16
∫(Inx/x^2)dx=-∫(Inx)d(1/x)=-1/2*[(lnx/x)-∫(1/x)d(Inx)]=1/2*[(lnx/x)+1/x^2]
分部积分∫cos(lnx)dx=xcos(lnx)+∫x*sin(lnx)*1/xdx=xcos(lnx)+∫sin(lnx)dx再一次分部积分=xcos(lnx)+xsin(lnx)-∫x*cos(
也可以考虑,分子分母同时乘以1-cosx,被积函数化为:(1-cosx)/sin²xI=∫(1-cosx)/sin²xdx=∫[csc²x-cscxcotx]dx=-co
xy'+y=lnx/x(xy)'=lnx/x积分:xy=∫lnxdx/xxy=∫lnxd(lnx)即:xy=1/2*ln²x+C
再答:见图
原式=积分符号Inxd(Inx)=1/2(Inx)²+C再问:不是是Inx/x²dx再答:哦,看错了原式=-∫Inxd(x^-1)=-(lnx*x^(-1)-∫1/xdInx=-I
∫lnx/x√(1+lnx)dx=∫lnxdlnx/√(1+lnx)令√(1+lnx)=t1+lnx=t^2lnx=t^2-1dlnx=2tdt原式化为=∫(t^2-1)*2tdt/t=2∫(t^2-
分步积分1/3x^3Inx+1/9x^3+c
∫cos(lnx)dx分部积分=xcos(lnx)+∫xsin(lnx)(1/x)dx=xcos(lnx)+∫sin(lnx)dx再分部积分=xcos(lnx)+xsin(lnx)-∫cos(lnx)
用两次分部积分就出来了:∫cos(lnx)dx=∫x*1/x*cos(lnx)dx=∫x*cos(lnx)dlnx=∫xdsin(lnx)=x*sin(lnx)-∫sin(lnx)dx=x*sin(l
解y‘=[sin(lnx)+cos(lnx)]+x[sin(lnx)+cos(lnx)]'=[sin(lnx)+cos(lnx)]+x[cos(lnx)/x-sin(lnx)/x]=[sin(lnx)
∫Inxdx=∫(x)'Inxdx=xlnx-∫x(lnx)'dx=xlnx-x
∫inx/√xdx=2∫inxd√x=2√xlnx-2∫√x*1/xdx=2√xlnx-2∫1/√xdx=2√xlnx-4√x+c
∫(Inx)^2*(1/x)dx=∫(Inx)^2dlnx=1/3(Inx)^3+C
没有错.你的老师说你错?你把下面的求导结果给他看,他如果还说你错.那就很不幸了,遇到一个又笨有固执的迂夫子,能换班赶紧换班.如果只是跟答案不一样,没有关系,只要求到对,就不用担心.加油!相信自己!To
∫dx/x*lnx*ln(lnx)=∫d(ln(lnx))/ln(lnx)=ln|ln(lnx)|+C
我的答案如下,先用分部积分法,再与后一项抵消:
(Inx/x)dx因为(1/x)dx=d(lnx),所以:=lnxd(lnx)=(1/2)(lnx)^2又:e
=x(lnx)²-∫x(2lnx)/xdx=x(lnx)²-2∫lnxdx=x(lnx)²-2xlnx+2∫x*(1/x)dx=x(lnx)²-2xlnx+2再
∫(1-Inx)/(x-Inx)^2dx=∫(1-Inx)/[x²(1-Inx/x)²]dx=∫[1/(1-Inx/x)²]*(1-Inx)/x²dx=∫[1/