是阶矩阵,对于齐次线性方程组 如果每个维向量都是方程组的解,则

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 12:24:49
是阶矩阵,对于齐次线性方程组 如果每个维向量都是方程组的解,则
设A是n阶矩阵,对于齐次线性方程组AX=0,如果A中每行元素之和均为0.且r(A)=n-1,则方程组的通解是?,如果每个

显然(1,1,.,1)^T是AX=0的非零解,把r(A)=n-1代入公式解向量个数=未知量个数-系数矩阵的秩=n-(n-1)=1所以方程只有一个解向量,所以通解就是X=k(1,1,.,1)^T,其中k

刘老师您好,A是n阶矩阵,对于齐次线性方程组AX=0,如r(A)=n-1,且代数余子式A11不等于0,则AX=0的通解是

AA*=|A|E这个不管A是否可逆总是成立的这是由行列式的展开定理直接得到的结果

齐次线性方程组有增广矩阵吗

有,即是(A,0).但是没有多少实质的作用!不用影响秩的求解,在化为阶梯形矩阵时也没有多大影响!

设A为m×n矩阵,齐次线性方程组Ax=0仅有零解的充分条件是(  )

A为m×n矩阵,∴A有m行n列,且方程组有n个未知数 Ax=0仅有零解⇔A的秩不小于方程组的未知数个数n∵R(A)=n⇔A的列秩=n⇔A的列向量线性无关.矩阵A有n列,∴A的列向量组线性无关

设A是5阶矩阵,如果齐次线性方程组Ax=0的基础解系有2个解,则R(A*)=?

齐次线性方程组Ax=0的基础解系有2个解,说明r(A)=3,即A的所有4阶子式都是0.想想A*的定义,就知道A*是0矩阵,故r(A*)=0.

设η1与η2是非齐次线性方程组Ax=b的两个不同解(A是m×n矩阵),ξ是对应的齐次线性方程组Ax=0的非零解,证明:

证明:(1)设k1η1+k2(η1-η2)=0,则k1Aη1+k2A(η1-η2)=0已知η1与η2是非齐次线性方程组Ax=b的两个不同解,因此Aη1=Aη2=b∴k1b=0而b≠0∴k1=0∴k2(

设A为n阶矩阵,B为n阶非零矩阵,若B的每一个列向量都是齐次线性方程组Ax=0是解,则|A|=?

|A|=0因为B非零,B的列向量都是AX=0的解,所以AX=0有非零解.所以|A|=0.

线性方程组的通解 齐次线性方程组的系数矩阵A(n阶方阵)的行列式值为0,Aij不等于零,证明:

证明:因为|A|=0所以AA*=|A|E=0所以A*的列向量都是AX=0的解.又因为|A|=0所以r(A)=1,所以r(A)>=n-1所以r(A)=n-1.所以AX=0的基础解系含n-r(A)=1个解

齐次线性方程组是什么?

齐次”从词面上解释是“次数相等”的意思.\x0d  微分方程中有两个地方用到“齐次”的叫法:\x0d  1、形如y'=f(y/x)的方程称为“齐次方程”,这里是指方程中每一项关于x、y的次数都

线性代数齐次线性方程组

1.你写错了,行列式不为0才只有零解其实1,2可以一起证.我们知道,基础解系所含的线性无关解向量的个数=n-r(A)那么很显然,如果n=r(A),那么基础解系就不含基础解向量但是零向量一定满足Ax=0

矩阵行列式齐次线性方程组

(A,B)=r(A)r(A,B)=r(A)=nr(A,B)=r(A)

设n阶矩阵A的伴随矩阵A*≠0,若ξ1,ξ2,ξ3,ξ4是非齐次线性方程组Ax=b的互不相等的解,则对应的齐次线性方程组

∵A是n阶的矩阵,∴AX=0和AX=b,含有n个未知数,于是,AX=0基础解系含向量的个数为:n-r(A),又:r(A*)=n,r(A)=n1,r(A)=n−10,0≤r(A)≤n−2,已知:A*≠0

求证:设n个未知数m个方程的其次线性方程组的系数矩阵的秩为r,齐次线性方程组有非零解的充要条件是r

是的这是定理,教材上肯定有你看看教材,哪不明白来追问或直接hi我再问:我知道是定理呀!但教材上没证明!我想知道怎么证明成立!再答:那么非齐次线性方程组的结论可用不?教材中一般先讲非齐次线性方程组将非齐

为什么齐次线性方程组有非零解的充分必要条件是系数矩阵的秩小于未知数的个数?

按矩阵理论,齐次线性方程组系数矩阵的秩不大于未知数的个数,当等于未知数的个数时,不但方程个数与未知数个数相等,而且说明各方程独立,即每一个方程都不能由其他方程代替,即此时矩阵满秩.按方程组理论,解只可

什么是线性方程组的系数矩阵和增广矩阵?齐次线性方程组有非零解的条件是什么?非齐次线性方程组有解条件是?

系数矩阵:方程组左边各方程的系数作为矩阵就是此方程的系数矩阵.增广矩阵:将非齐次方程右边作为列向量加在系数矩阵后就是增广矩阵.其次方程有非零解的条件是系数矩阵的秩小于N,就是说未知数的个数大于方程的个