曲线c与抛物线p平方=2x 1关于直线y=-x对称,则曲线c的方程为

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 12:04:56
曲线c与抛物线p平方=2x 1关于直线y=-x对称,则曲线c的方程为
由题意可设抛物线的方程y2=2px(p≠0),直线与抛物线交与A(x1,y

由题意可设抛物线的方程y2=2px(p≠0),直线与抛物线交与A(x1,y1),B(x2,y2)联立方程y2=2pxy=2x+1可得,4x2+(4-2p)x+1=0则x1+x2=12p-1,x1x2=

若一元二次方程ax平方+bx+c=0的根为x1=-5,x2=2则抛物线y=ax平方+bx+c与x轴交点坐标为?若抛物线y

(1)依题意知x²+2x-3=0的两根分别为x1=﹣3、x2=1,即B(﹣3,0)、C(1,0),那么抛物线交点式为y=a(x-1)(x+3)=ax²+2ax-3a,即有b=2a,

已知抛物线C:y^2=2px(p>0)上横坐标为4的点到焦点的距离为5.设直线y=kx+b与抛物线C交于两点A(X1,Y

因为横坐标为4的点到焦点距离与到x=-p/2距离相等(抛物线定义),所以求得p=2.抛物线方程为y^2=4x.与直线方程联立消去x得到关于y的一元二次方程y^2-4y/k+4b/k=0.由韦达定理可知

P是抛物线C:y=1/2 X^2 上一点,直线l过点P并与抛物线C在点P的切线垂直,l与抛物线C交于另一点Q,当点P在

很高兴为您解答,【学习宝典】团队为您答题.请点击下面的【选为满意回答】按钮,

已知抛物线C:y^2=2px(p>0)上横坐标为4的点到焦点距离为5 设直线y=kx+b与抛物线C交于A(X1,Y1),

准线为x=-p/2根据抛物线定义x+p/2=5题目中x=4p/2=1p=2所以抛物线方程:y²=4x后边还有什么问题,请补充或者追问

过点P(2,0)且斜率为K的直线L交抛物线Y的平方=2x于M(x1,y1)N(x2,y2)两点

由题设函数为y=kx+b带入点P(2,0)得到0=2k+b则b=-2k从而y=kx-2k因为直线L与y²=x交于两点则(kx-2k)²=xk²x²-4k

已知抛物线 y=x^2+bx-x+c与x轴交点的横坐标为X1、X2,且X1>0,X2=X1+1.

设f(x)=x^2+bx+c,则题中f(x)-x=x^2+bx-x+c与x轴交点的横坐标为X1、X2=x1+1,设f(x)-x=(x-x1)(x-x1-1)f(x)=(x-x1)(x-x1-1)+xy

已知抛物线y=ax^2 +bx+c 与X轴交于A(X1,0) B(X2,0) X1小于X2,与Y轴交于点C 抛物线顶点为

(1)、根据已知条件和抛物线的顶点坐标,可得以下三式a-b+c=0-b/2a=1(4ac-b^2)/(4a)=-4解之得,a=1b=-2c=-3解析式为y=x^2-2x-3x2=3B点坐标(3,0)C

如图,一元二次方程x的平方+2x-3=0的二根x1、x2(x1小于x2)是抛物线y=ax平方+bx+c与x轴的两个交点B

(1)依题意知x²+2x-3=0的两根分别为x1=﹣3、x2=1,即B(﹣3,0)、C(1,0),那么抛物线交点式为y=a(x-1)(x+3)=ax²+2ax-3a,即有b=2a,

抛物线y=ax²-2ax+m经过点P(4,5),与x轴交于A(x1,0),B(x2,0)两点,x1

由抛物线经过点P(4,5),得到8a+m=5⑴再由三角形PAB的面积=10,得到(1/2)*(x2-x1)*5=10,得到x2-x1=4因为x2+x1=2,x2*x1=m/a所以(x2-x1)^2=(

已知抛物线y=-1/6x^2+bx+c的顶点为P,与x轴的正半轴交于A(x1,0),B(x2,0) (X1

C点x=0,则有y[1]=c;由韦达定理得:x[1]+x[2]=6b,x[1]•x[2]=-6cAM斜率:k[1]=(-(3/2)-0/0-x[1])=(3/2x[1])BC斜率:k[2]

直线l过抛物线y^2=29x(p>0)的焦点,且与抛物线相交于A(x1,y2),B(x2,y2)两点,点C在抛物线的准线

证明,由题意可知抛物线的焦点为(29/4,0)直线AB方程为y=k(x-29/4)代入曲线方程的y^2-29/k*y-29^2/4=0有根公式可得y1+y2=29/ky1*y2=-29^2/4有由题可

设抛物线y平方=2px(p>0)的焦点为F,经过点F的直线交抛物线与A.B两点,点C在抛物线的准线上,且BC平行x轴,证

设A(x1,y1),B(x2,y2),则C(-p/2,y2)设直线AB:x=ky+p/2,代入y^2=2px得y^2-2pky-p^2=0所以y1y2=-p^2,y2=-p^2/y1OA的斜率为k1=

已知直线y=bx+c与抛物线y=ax^2的两个交点是A(x1,y1),B(x2,y2),该直线与x轴交于点P(X0,0)

联立两个方程得:ax^2-bx-c=0所以x1与x2为此方程的两个根所以1/x1+1/x2=(x1+x2)/(x1x2)=(b/a)/(-c/a)=-b/c又因为直线y=bx+c与x轴交点为(-c/b

已知过点(0,4),斜率为-1的直线l与抛物线C;y平方=2px(p>0)交于A,B两点.(1)求

C的顶点是原点,距离l2倍根号2l:y=-x+4(-x+4)^2=2pxx^2-(8+2px)+16=0中的横坐标为6所以x1+x2=12=8+2pxp=2焦点为(2,0)

已知开口向下的抛物线y=ax^2+bx+c与x轴交于A(x1,0)和B(x2,0),其中x1<x2,P为顶点,∠APB=

x1^2+X2^2=(x1+X2)^2-2x1X2=【2(m-2)】^2-2(m^2-21)=26解得m=4带入x^2-2(m-2)x+m^2-21=0解得x1=-1x2=5得出AB两点的坐标抛物线关

如图抛物线y=-1/2x平方-x+4交坐标轴与A,B,C三点,点P在抛物线上,S△PAC=4,求P点坐标

y=-x²/2-x+4=-(x²+2x-8)/2=-(x-2)(x+4)/2上式当y=0时得:x=-4或x=2函数方程与x轴交点为A(-4,0)和B(2,0)当x=0时代入y=-x

已知抛物线C的方程为x^2=2py(p>0),焦点F为(0,1),点P(x1,y1)是抛物线上的任意一点,过点P作抛物线

1.焦点F为(0,1),p/2=1,p=2故抛物线方程是x^2=4y2,过P(x1,y1)的切线方程是:x1x=2(y+y1)抛物线的准线方程是y=-1联立得:t=-1,s=2(y1-1)/x1=2(