曲线L为x^2 y^2=1的正向,则∫(x^2 y^2)ds=

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 09:10:08
曲线L为x^2 y^2=1的正向,则∫(x^2 y^2)ds=
设L为取正向的圆周x2+y2=9,则曲线积分∮L(2xy-2y)dx+(x2-4x)dy=______.

设D为圆周L的内部,P=2xy-2y,Q=x2-4x.利用格林公式可得,∮L(2xy-2y)dx+(x2-4x)dy=∬D(∂Q∂x−∂P∂y)dxdy=∬D((2x−4)−(2x−2)dxdy=−2

已知函数f(x)=x的立方+x-16.(1)直线l为曲线y=f(x)的切线,且经过原点,求直线l的方程;(2)如果曲线y

f(x)导数为f'(x)=3X^2+1;设切点为(m,n).则切线方程为:Y=(3m^2+1)X;点(m,n)在切线上有:n=(3m^2+1)m;-------------------1当然切点在曲线

设l为曲线x^2/4+y^2/3=1,其周长为a,计算曲线积分

简单的很,因为是曲线积分,所以可以将曲线方程带入化简积分函数,带入后可以把积分函数中3x^2+4y^2一项消去,得到了∫L(12+2xy)ds吧?因为由曲线方程同时乘以12得到的积分函数中的一项……对

L为三顶点(0,0)(3,0)和(3,2)的三角形区域的正向边界 求曲线积分∫L(2x-y+4x)dx+(5y+3x-6

根据格林公式⑴∮P(x,y)dx+Q(x,y)dy=∫∫D(dQ/dx-dP/dy)dxdy有∫L(2x-y+4x)dx+(5y+3x-6)dy=∫∫D(3-1)dxdy=2∫∫Ddxdy=2*S△=

如题:设L是由曲线y^3=x^2与直线y=x连接起来的正向闭曲线,计算 (x^2)ydx+y^2dy的曲线积分(积分符号

设C是由曲线y³=x²与直线y=x连接起来的正向闭曲线,计算∮x²ydx+y²dy的曲线积分C:y=x^(2/3),y=x;区域D:由曲线C所围的区域;P=x&

曲线积分封闭曲线∫(x²y-2y)dx+(x三次方/3-x)dy,L为一直线x=1,y=x,y=2x为边的三角

P=x²y-2yQ=x^3/3-xdQ/dx-dP/dy=x²-1-(x²-2)=1∫(x²y-2y)dx+(x三次方/3-x)dy=∫dxdy=(2-1)*1

曲线积分∫(y^2+sinx)dx+(cos^2y-2x)dy L为星形线所围区域的正向边界 用格林公式

∫(y^2+sinx)dx+(cos^2y-2x)dy=∫(-2y+sinx)dx+(cos^2y-2x)dy+∫(y^2+2y)dx前一个格林公式等于零∫(y^2+2y)dx将星形线参数方程带入∫[

求第二类曲线积分∫ (y-z)dx+(z-x)dy+(x-y)dz,L为椭圆x^2+y^2=1,x+y=1,从x轴正向看

题目有点问题,x²+y²=1与x+y=1围成的区域不是封闭区域.题中也没有规限z的范围再问:是xz=1打错了再答:

∮L(2xy-x^2)dx+(x+y^2)dy,其中L是由抛物线y=x^2和x=y^2所围成的区域的正向边界曲线

令P=2xy,Q=x+y².则αP/αy=2x,αQ/αx=1根据格林公式,得∮(2xy-x²)dx+(x+y²)dy=∫∫(1-2x)dxdy(S是L所围成区域)=∫d

L是定点分别为(-1/2,5/2),(1,5),(2,1)的三角形正向边界,是计算曲线积分∮L(2x-y+4)dx+(5

令P=2x-y+4,Q=5y-3x-6∂P/∂y=-1,∂Q/∂x=-3∮_L(2x-y+4)dx+(5y-3x-6)dy=∫∫_D(∂Q/

计算∫L(x^2-2y)dx+(x+y^2siny)dy,其中L是圆周x^2+y^2=2x的正向曲线,

∵L圆周x^2+y^2=2x的半径是1∴L圆周面积∫∫dxdy=π*1^2=π(S表示L圆周x^2+y^2=2x区域)故∫L(x^2-2y)dx+(x+y^2siny)dy=∫∫[α(x+y^2sin

第一型曲线积分的问题:1.计算∫下标L|y| ds,其中L为右半单位圆周:x^2+y^2=1,x>=0

因为所给曲线为关于x轴对称的半圆吧?我们可以用对称性,直接研究第一象限中的曲线部分吧?再乘以2不完了吗?因此绝对值可以去掉了吧?用极坐标代换简单的……分别计算简单,没有什么捷径可走的,分成两个曲线计算

设L为取正向的圆周x²+y²=9,求曲线积分∮(2xy-2y)dx+(x²-4x)dy的值

用参数方程呗,x=3cost,y=3sint,t从0到2π,结果是-18π再问:什么叫做正向的圆周啊再答:就是逆时针,t从0到2π

L为取正向的圆周,x^2+y^2=R^2,求曲线积分∮xy^2dy-x^2ydx的值(答案是πR^4/2)

因为取格林公式后,由线积分变成面积分,二重积分(x^2+y^2)dxdy,(x^2+y^2)不能用圆周方程x^2+y^2=R^2替换,因为不在线上一重积分了,改为在圆面上二重积分了,应该用极坐标计算,

求曲线积分fxy^2dy-x^2ydx其中L为圆周x^2+y^2=a^2的正向,

因为P=-x^2y,Q=xy^2.所以Py=-x^2,Qx=y^2.利用格林公式:∮cP(x,y)dx+Q(x,y)dy=∫∫D(dQ/dx-dP/dy)dxdy,其中c是的取正向的边界曲线.故原式=

设L为取正向的圆周x²+y²=4,则曲线积分∫L(x²+y)dx+(x-y²)d

用格林公式将一个封闭曲线上的线积分化为在此封闭区域内的面积分∫L(x²+y)dx+(x-y²)dy=(在曲线L围成的封闭区域上积分)∫∫{[∂(x-y²)/&

设L为取正向圆周的X^2+Y^2=1,求∫(-y)dx+xdy

设P(x,y)=-yQ(x,y)=x那么αP/αy=-1αQ/αx=1根据格林公式(不会自己去查)原式=∫∫[(αQ/αx)-(αP/αy)]dxdy=∫∫2dxdy=2π