曲线r=2acosΘ所围图形的面积为
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/13 08:15:08
=2acosθ,两边同时乘以r得到r平方=2a*rcosθ化简得到x平方+y平方=2ay为一个圆点在(0,a),半径为a的圆所以面积是π乘以a平方.
半径为2a的圆,所以你的问题答案是4(pai)a方建议你看这个~
理论上可以.先化为极坐标表示:p=a*(sin^6t+cos^6t)^(1/2),在积分.面积S=p^2(t)dt(积分上下限为2PI,0),不过这样积分更复杂.再问:能提供解题答案吗极坐标的我解的不
用极坐标二重积分:面积S=∫∫dxdy=∫da∫rdr[0,π]时:S1=∫sinada=-cosa=2[π,2π]时:r的积分下限1+sina,积分上限1,S2=∫-sinada=cosa=2所以面
这种积分题还是比较麻烦的,真想用matlab给你做.这是个“鸡蛋图”只求y大于0部分的面积,记为s1极坐标化为参数方程:x=2a(2+cost)cost,y=2a(2+cost)sints1=int(
公式太多,直接弄成图片了,还不懂的话就追问吧再问:有没有更简单一点的方法啊,考试时也要这样推来推去的麽,还是说无论什么情况,用定积分算圆的面积时,θ都是取(-π/2→π/2)?再答:因为你弄不清楚范围
x=asinθ+acosθ=√2a(sinθcos45+cosθsin45)=√2asin(θ+45)同样:y=acosθ+asinθ=√2a(sinθcos45+cosθsin45)=√2asin(
cosθ=ρ/2a>=0所以θ范围是(-π/2,π/2)S=∫1/2*ρ^2dθ=∫2a^2cosθdθ=a^2∫(1+cos2θ)dθ=a^2+1/2a^2sin2θ积分范围是(-π/2,π/2)故
ρ=2acosα是圆心为(a,0),半径为a的圆画出图从图中得α取值-π/2到π/2再问:有没其他做法...画图花好多时间...我还有其他题目不懂画图...定积分噢再答:极坐标的题目的常用的图形不多,
x是角度吧?是条心性线,要用定积分,从0积分到2π.∫r*rdx=∫(a+aCosx)*(a+aCosx)dx=a*a∫dx+2a*a∫Cosxdx+a*a∫CosxCosxdx=2aaπ+0+aaπ
图像成三叶草形状,可用极坐标下的二重积分公式计算面积,其面积为θ从0积到60度,r从0积到asin3θ的三倍,我算了一下,似乎等于pie/4*a*a,如果不对,还请见谅
分析:先将原极坐标方程两边同乘以r后化成直角坐标方程,再利用直角坐标方程进行求解面积即可.解法:r²=2arcosθ,化为x²+y²=2ax,即:x²-2ax+
.应该是:圆x=acosθ,y=asinθ所围成图形的面积A吧.圆的方程是x^2+y^2=a^2半径是a,则有面积A=πa^2
x=a(cost)^2y=a(sint)^2a>0x+y=a交x轴于A,交y轴于Bx=0,y=aB(0,a)y=0,x=aA(a,0)Saob=(1/2)OA*OB=(1/2)a^2
将极坐标转换成直角坐标后就很容易知道这是两条怎样的曲线.转换公式是: r=√(x²+y²), cosθ =x/√(x²
曲线 ρ=2acosθ 形成的圆形在极轴右侧,即从 (-π/2,π/2) 的区域
你的答案有问题吧?结果应该是1,见图片将图中的a换成1就是你的题.
因为当θ超过π/2的时候2acosθ是一个负值(假定a>0)那么负的长度就应该反向画出!、比如(π,-2a),-2a的落点在右边一个圆的最右端那个点!你的错误在于:把直角坐标和极坐标搞混淆了,认为(π
按格林公式,取P(x,y)=-y,Q(x,y)=x,则封闭曲线L所围图形的面积A=1/2*∫L-ydx+xdy=1/2*∫(上限2π下限0)(abcos^2θ+absin^2θ)dθ=(1/2)ab∫