曲线y=1 t-x经过点p(2,-1)

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 23:25:58
曲线y=1 t-x经过点p(2,-1)
已知曲线y=x^3+2x-1,求过点p(0,1)与曲线相切的曲线方程.

这个问题简单哦y'=3x^2+2当x=0时.得K=2又过(0,1)得切线方程y=2x+1完毕给分

已知函数f(x)=1/3x^3+ax^2+bx,a,b属于R,(1)曲线C:y=f(x)经过点P(1,2),且曲线C在点

1由题目条件可得f(1)=2,f(x)的导函数在x=1时的值为2,由此得1/3+a+b=2,1+2a+b=2,解得a=-2/3,b=7/32由题意得f(x)的导函数在区间(1,2)内由两个取值为0,由

已知曲线y=2倍根号x+1,在曲线上是否存在点p,使在点p处曲线的切线方程与y=-2x+3垂直

∵点P处曲线的切线方程与y=-2x+3垂直∴可设该切线方程为y=1/2x+a假设点P存在则方程组y=2√x+1{有且只有一个根y=1/2x+a将方程组消元得1/4x^2+(a-4)x+a^2-4=0因

点P是曲线y=ln(x-1)上任意一点,求点P到直线y=x+2的距离的最小值

可设点P(x,y)到直线y=x+2的距离最短.易知,曲线y=ln(x-1)在点P(x,y)处的切线与直线y=x+2平行∴1/(x-1)=1∴x=2,∴P(2,0)∴(d)min=|2-0+2|/√2=

曲线y=根号(4-x^2),P点在曲线上运动,求y/(x+5)的范围

曲线式圆心在(0,0)半径为2的上半圆周设y/(x+5)=k即y=k(x+5)这是经过(5,0)的直线,本题相当与求与曲线相交的直线的斜率范围.0

已知p在曲线x=2+cosθ y=sinθ上,点Q在曲线x=t-1,y=根号2t上,试求lPQl最小值,并求此时Q点的坐

P点在的曲线C为:(x-2)²+y²=1,它是以(2,0)点为圆心1为半径的圆;Q点在的曲线D为:y²=2t,t=x+1,即y²=2﹙x+1﹚,﹛y≥0,﹙∵t

点P在曲线y=f(x)=x²+1上,且曲线在P处的切线与曲线y=-2x²-1相切 求点P坐标

设切线方程为:y=kx+b该直线与两个曲线均相切y=x²+1y=kx+b联列方程组,消去y得:x²-kx-b+1=0△=k²+4b-4=0①②y=-2x²-1y

已知曲线y=1/3x~3+4/3.求曲线过点P(2,4)的切线方程

储备知识:1)曲线y=x^n对其求导(即求其微分)y’=n•x^(n-1)若有点Q(a,a^n)把x=a代入y’=n•x^(n-1)得到y’=n•a^(n-1)即为

已知函数f(x)=log2(x+1),当点(x,y)在y=f(x)的曲线上运动时,点P[(x-t+1)/2,2y]在y=

(1)设P(X,Y)X=(x-t+1)/2x+1=2X+tY=2yy=Y/2又y=log2(x+1)所以g(x)=2log2(2x+t)(2)g(x)>=f(x)2log2(2x+t)≥log2(x+

已知曲线y=1/t-x上两点p(2,-1),q(-1,2/1),求曲线在点p,q处的切线斜率

按你写的,y=1/(t-x)q(-1,1/2)将两点代入曲线得到y=1/(1-x)y'=1/(1-x)²当x=2时,y'=1当x=-1时,y'=1/4

已知函数f(x)=x3+1,求曲线y=f(x)经过P(1,2)的切线方程

f'(x)=3x^2f'(1)=3由点斜式得切线方程:y=3(x-1)+2=3x-1

已知曲线C:y=x^3+2和点p(1,3),则过点p且和曲线C相切的切线方程是

.求导数,设交点为(x,x^3+2),利用斜率相等求出交点的x,求出来了;

P、Q分别为直线x=1+4/5t y=1+3/5t (t为参数) 和曲线C:P=√2cos(θ+π/4)上的点,则│PQ

直线的普通方程是:3x-4y+1=0曲线化为普通方程是:x²+y²=x-y,即:[x-(1/2)]²+[y+(1/2)]²=(1/2)则PQ的最小值就表示圆上的

如果一条直线经过原点且与曲线y=1x+1相切于点P,那么切点P的坐标为(  )

设切点坐标为(a,1a+1),由切线过(0,0),得到切线的斜率k=1a(a+1),又y=1x+1,∴y′=-1(x+1)2把x=a代入得:斜率k=-1(a+1)2,∴1a(a+1)=-1(a+1)2

若点P在曲线y=x^3-3x^2+(3-根号3)x+1上移动,经过点p的切线的倾斜角的范围是

y'=3x²-6x+3-√3=3(x-1)²-√3≥-√3即k≥-√3tana≥-√30≤a

设Γ为曲线x=t,y=t^2,z=t^3上相应于t从0变为1的曲线弧.第二类曲线积分∫P(x,y,z)dx+Q(x,y,

T=(x',y',z')=(1,2t,3t^2)所以,三个方向余弦分别为cosα=1/√(1+4t^2+9t^4)cosβ=2t/√(1+4t^2+9t^4)cosγ=3t^2/√(1+4t^2+9t

对坐标的曲线积分曲线在点(X,Y)处的线密度为p=|Y|,求曲线X=acost,Y=bsint(0<t<2兀,0<b<a

所求质量M=∫[0,2π]|bsint|√[(-asint)²+(bcost)²]dt=∫[0,2π]|bsint|√[a²+(b²-a²)cos&#

已知P点在曲线y=x-1/x上,且曲线在点P的切线与直线X+2y=0垂直,求P点坐标

该切线的k=2令切线为y=2x+b代入y=x-1/x2x+b=x-1/xx^2+bx+1=0b^2-4=0b=+-2切线:y=2x+2或y=2x-2x=+-1y=0