曲线y=sinx直线x=π 2,x=(3 2)*π及x轴所围成的平面图形面积
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 00:39:08
由于y=sinx,y=cosx的交点是(π4,22),因此所围成的面积为A=∫π20|sinx−cosx|dx=∫π40(cosx−sinx)dx+∫π2π4(sinx−cosx)dx=[sinx+c
求导:y'=cosx所以斜率在x=π/2处k=y'=0因为x=π/2时,y=1所以切线方程:y=1,即为平行于x轴的直线!
y=sinx,y=cosx交点是(π/4,√2/2)得到S=∫(cosx-sinx)dx(0到π/4)+∫(sinx-cosx)dx(π/4到π/2)=√2-1+√2-1=2√2-2再问:再问:第10
由直线x=a,x=b(a
y导=[cosx(sinx+cosx)-(cosx-sinx)sinx]/(sinx+cosx)²=1/(sinx+cosx)²在x=π/4外的切线的斜率为k=1/2所以在x=π/
当x∈[-π/4,π/4]时,有cosx>sinx∴A=∫(cosx-sinx)dx积分限为[-π/4,π/4]=sinx+cosx=[sin(π/4)+cos(π/4)]-[sin(-π/4)+co
只有在0≤x≤π/2与直线y=1围成的封闭图形S1=∫(0,π/2)ydx=∫(0,π/2)sinxdx=-cosx|(0,π/2)=1S=1*π/2-S1=π/2-1
x=0,y=0x=π/2,y=1因此面积可化为定积分∫[0,π/2](x-sinx)dx=(x^2/2+cosx)[0,π/2]=π^2/4-1
先求导得导函数为y=cosx,cos2/3π=-1/2,所以曲线y=sinx在x=2/3π处切线的斜率为-1/2,如果你没学过导数的话,那这题对你来说就超纲了,请放弃
如图,第一个图是你要求的面积,把它可以转化成第二个图,两个面积是相同的,这样好求一点.这样,则面积是两块对称的图形,不妨算一下左边的面积,S=∫(sinx-cosx)dx (π/4≤x≤5π
解;y=sinxy'=cosx令y'=1则cosx=1x可以取0当x=0y=sinx=0所以点(0,0)为所求,选A
y=sinxy'=cosx令y'=1即cosx=1x=2k派,k是整数当k=0时,x=0,y=0即曲线y=sinx在点(0,0)处的切线与直线y=x+7平行
1.在区间[0,π/2]上,函数sinx与cosx交于(π/4,根号2/2),而在[0,π/4)上cosx>sinx;在[π/4,π/2]上,sinx>cosx,所以所求面积为S=∫(0->π/2)|
当0≤x≤π4时,cosx>sinx,∴曲线y=sinx,y=cosx与直线x=0,x=π4所围成的平面区域的面积为:S=∫π40(cosx-sinx)dx=(sinx+cosx)|π40=sinπ4
(1)x=y^2的轴就是x轴,所以题目是曲线y=sinx与直线y=0及x=π/2所围图形绕x轴旋转一周所成立体的体积.(2)见图片:
y'=x+sinxy=∫(x+sinx)dx=x²/2-cosx+C与直线y=x在原点相切,即曲线经过(0,0),带入之0=-1+C==>C=1所以所求方程为y=x²/2-cosx
S=ʃ(-π,π)|sinx|dx=2ʃ(0,π)sinxdx=4答案选A注意C的结果是0
如图所示:与x轴所围成平面图形的面积=π
矩形的面积减去y=sinx,x=Π/2和x轴围成的面积S=2×π/2-ʃ(0-->π/2)sinxdx =π-(-cosx|(0-->π/2)) =π+(co