曲线y^2=2X在点(2,2)处的切点

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 16:15:17
曲线y^2=2X在点(2,2)处的切点
求一曲线方程,曲线过原点,在点(x,y)处的切线斜率为2x+y

设这个曲线为y=f(x),有f(0)=0(因过原点)且y'=2x+y,即y'-y=2x这是一个可以用公式法解的方程解得y=Ce^x+2x+2令x=0有0=C+2,所以C=-2所以曲线方程为y=-2e^

设曲线y=y(x)在其点(x,y)处的切线斜率为4x^2-y/x,且曲线过点(1,1),求该曲线的方程.

手机没法输入公式,方法如下.对斜率求x的不定积分,代入(1,1)求得待定常数.得解再问:对斜率怎么求不定积分呢再答:斜率的表达式y=f(x)即y'=4x^2-y'/x',得y‘=4x^2/(1+1/x

曲线y=x/(2+x)在点(-1,-1)处的切线方程是

切点是(-1,-1)y=x/(2+x)则:y'=[(x)'(2+x)-x(2+x)']/(2+x)²y'=2/(2+x)²则切线斜率是:k=y'|(x=-1)=2切线方程是:y=2

已知曲线y=f(x)在点X处切线的,斜率为2X,曲线(1,0),求曲线方程

f'(x)=2x因为(x^2+c)"=2x,其中c是常数所以f(x)=x^2+c过(1,0)0=1^2+c所以f(x)=x^2-1

1.曲线y=x/(x-2)在点(1,-1)处的切线方程为?

1、y'=[(x-2)-x]/(x-2)^2=-2/(x-2)^2y'(1)=-2y+1=-2(x-1)y=-2x+12、y'=-1/x^2y'(x1)=-1/(x1)^2=tan135°=-1x1=

曲线y=f(x)在点x处的切线斜率为2x-1,且曲线过点(0,1),则曲线方程是什么

由题意可知f(x)的导数方程为2x-1故设f(x)=x^2-x+C又因曲线过点(0,1)代入求得f(x)=x^2-x+1

曲线y=(1/2)^x在x=0点处的切线方程是

y=(1/2)^x对y求导,(a^x)'=a^x*lnay'=(1/2)^x*ln(1/2)=-ln2*(1/2)^xx=0时,k=y'=-ln2,y=1切线方程:y-1=-ln2(x-0),y=-l

设函数f(x)=g(x)+x^2,曲线y=g(x)在点(1,g(1))处的切线方程为y=2x+1,则曲线y=f(x)在点

由题目可知,g'(1)=2对f(x)求导:f'(1)=g'(1)+2=4得直线斜率为4g(1)=3f(1)=g(1)+1=4所以直线过点(1,4)所以直线方程y=4x

曲线 y=x^3-3x在点(2,2)处的法线方程

答:求导y'=3x^2-3当x=2时,y'=9所以法线方程是y=-1/9x+k.因为过(2,2)代入得k=20/9所以法线方程是:y=-x/9+20/9即9y+x=20

设函数f(x)=g(x)+x^2,曲线y=g(x)在点(1,g(1))处的切线方程为y=2x+1,则曲线y=f(x)在点

由题得g'(1)=2g(x)的切线方程为y=2x+1=2(x-1)+3所以g(1)=3f'(1)=g'(1)+2x=2+2=4f(1)=g(1)+9=12所以f(x)在(1,f(1))处的切线方程为y

设函数F(X)=G(2X-1)+X方曲线Y=G(X)在点(1,G(1))处的切线方程为Y=2X+1则曲线Y=F(X)在点

f'(x)=2g'(x)+1=2x+1所以g'(x)=x即g(x)=x²,所以f(x)=(2x-1)²+x=4x²-3x+1f'(x)=8x-3f'(1)=5f(1)=2

设函数f(x)=g(x)+x^2,曲线y=g(x)在点(1,g(1))处切线方程为y=2x+1,则曲线y=f(x)在点(

曲线y=f(x)在点(1,f(1))处切线的斜率为4答案为b.4因为曲线y=g(x)在点(1,g(1))处切线方程为y=2x+1说明g'(1)=2所以y=f(x)=g(x)+x^2,在点(1,f(1)

曲线y=(1/2)^x在x=0点处的切线方程是?

y=(1/2)^xy'=(1/2)^x*ln(1/2)=-ln2*(1/2)^xx=0时,k=y'=-ln2,y=1切线方程:y-1=-ln2(x-0),y=-ln2*x+1再问:y'=(1/2)^x

曲线y=根号(4-x^2),P点在曲线上运动,求y/(x+5)的范围

曲线式圆心在(0,0)半径为2的上半圆周设y/(x+5)=k即y=k(x+5)这是经过(5,0)的直线,本题相当与求与曲线相交的直线的斜率范围.0

曲线Y=X/(2X-1)在点(1,1)处的切线方程为什么?

首先,原方程求导得(-1)/(2x-1)^2.点(1,1)在曲线上,所以讲x=1带入得到k=(-1)/(2-1)^2=-1..设切线方程为y=kx+b.将点(1,1)与k=-1带入.得b=2.所以切线

曲线y=3x-x^2在点(1,2)处的切线方程

点(1,2)在曲线上.y'=3-2xy'(1)=3-2=1由点斜式即得切线方程:y=1(x-1)+2=x+1

曲线过原点,在点(x,y)处切线斜率为5x+2y,求曲线方程.

根据题意有:y'=5x+2y.即:y'-2y=5x.利用公式:若y’+P(x)y=Q(x)则有y=e^(-∫Pdx)*(∫Qe^(∫Pdx)dx+C).所以本题:y=e^(-∫Pdx)*(∫Qe^(∫

求过点(1,-1)与曲线y= x^3-2x相切的直线方程.2.求曲线y=x^2在点

y'=3x^2-2  y'(1)=3-2=1因此由点斜式得切线方程为y=1*(x-1)-1=x-22.y'=2xy'(1)=2因此在点(1,1)的切

曲线y=x^3-2,x在点(1,-1)处的切线方程为?

y'=3x^2y'|x=1=3y-(-1)=3(x-1)3x-y-4=0