曲线上任一点切线斜率和恒为给点的横坐标与纵坐标之比,则

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 13:17:39
曲线上任一点切线斜率和恒为给点的横坐标与纵坐标之比,则
已知曲线过点(2,1),且曲线上任一点(x,y)处 的切线斜率等于-1-y/x,求此曲线方程

是(-1-y)/x吗?在任一点(x,y)的切线斜率就是在该点的导数值,dy/dx=-(1+y)/x,解该微分方程,dy/(1+y)=-dx/x,两边积分,∫d(1+y)/(1+y)=-∫dx/xln(

一曲线经过(0,5) 且其上任一点(x,y) 处的切线斜率等于sinx,求曲线

曲线其上任一点(x,y)处的切线斜率等于sinx∴f'(x)=sinx∴f(x)=-cosx+C∵曲线过(0,5)∴-cos0+C=5即C=6∴曲线方程是y=-cosx+6

曲线方程,过点M看图,其曲线上任一点的切线斜率为cosx-sinx.求曲线方程,

图看不清再问:点M(4分之派,根号2)再问:其他的,我都打上去去了再答:再问:????再答:?再问:你会做么?再答:就是过M点与曲线上一点连线斜率为cosx-sinx不是么再问:嗯嗯~是的,求曲线方程

已知曲线过点(2,4/3),并且曲线上任何一点的切线与该切点到原点连线斜率之和等于切点处的横坐标,求方程

设曲线上任一点(x,y),由已知得:y'+y/x=x一节线性非齐次微分方程,可用公式法做或常数变易法做,(1)解y'+y/x=0可分离变量微分解得:y=c/x(2)设y=c(x)/x为原方程的解y,y

一曲线过点 ,且在曲线上任何一点的切线斜率等于自原点到该切线的连线的斜率的2倍,求曲线的方程.

依题意有dy/dx=2y/x所以dy/y=2dx/x∫dy/y=∫2dx/xln|y|=2ln|x|+lnCy=Cx²因为曲线过点(1,1/3)所以1/3=C*1²所以C=1/3所

设曲线通过点(1,2),且其上任一点的切线斜率等于这点横坐标的两倍,求此曲线的方程

f'(x)=2x:.f(x)=x^2+c(c为常数)过点(1,2),2=1^2+c,:.c=1:.f(x)=x^2+1再问:想问的是为什么f'(x)=2x??再答:可能你没学到导数,高一吗切线的斜率和

一曲线过点(1,1/3),且在曲线上任何一点的切线斜率等于自原点到该切点的连线的斜率的2倍,求这曲线方程.

理解题目说的意思曲线上任何一点的切线斜率即为曲线任何一点的导数dy/dx自原点到该切点的连线的斜率即为y/x具体以dy/dx=2y/x即dy/y=2dx/x两边积分Ln|y|=2Ln|x|+C即y=C

一曲线过点(0,1),并且在其上任一点处的切线斜率等于该点横坐标的两倍,试求该曲线的方程?

依题意列微分方程:y'=2xy(0)=1即dy=2xdx积分:y=x^2+Cy(0)=0+C=1得:c=1故有:y=x^2+1

设曲线y=f(x)上任一点(x,y)处切线斜率为y/x加上x的平方, 且该曲线过点(1,1/2) 求曲线y=f(x)

已知dy/dx=f'(x)=y/x+x²,则有dy/dx-y/x=x²对应的齐次线性微分方程为dy/dx-y/x=0变形,得dy/y=dx/x两边积分,得Ln丨y丨=Ln丨x丨+c

设曲线通过点(1,2),且其上任一点处的切线斜率等于这点横坐标的3倍,求曲线的方程?

任一点处的切线斜率=3,说明,任意点的导数y'=3积分后,y=3x+C,C是任意常数.通过点(1,2),则y=3x-1

一曲线经过点(1,0),且其上任一点X处的切线斜率为4乘X的3次方,求曲线的方程.

这是微分方程的问题dy/dx=4x^3那么y=∫dy=∫4x^3dx=x^4+C又曲线经过点(1,0)那么0=1^4+C所以C=-1故y=x^4-1如果不懂,请Hi我,祝学习愉快!

曲线过(e^2,3),且切线上任一点的斜率等于该点横坐标的导数,求此曲线的方程,这道题我解题思路会,但是,老师最后求解的

∫dx/x=ln|x|+c微分时lnx中的自变量大于0,但积分时(1/x),无此限制,结果必须加绝对值符号.或者分两种情况考虑则更清楚:(a)x>0∫dx/x=ln|x|+c(b)x∫dx/x=-∫d

设曲线上任一点处的切线斜率与切点的横坐标成反比,且曲线过点(1,2),求该曲线方程

设该曲线方程为y=f(x).则在x点的切线的斜率为y'=f'(x).所以依题意得:xf'(x)=k.(其中k为常数反比例常数)所以:f'(x)=k/x.即:f(x)=klnx+C.由于曲线过(1,2)

曲线上任一点处的切线斜率恒为该点的横坐标与纵坐标之比,则此曲线的方程是

应为等轴双曲线或斜率绝对值为1的过原点的直线,设曲线方程为f(x)=y,则由已知有:y‘=x/y即y’*y=x;两边同时取关于dx的不定积分有:∫y‘ydx=∫xdx即∫ydy=∫xdx,得:y^2-

一曲线过点(1,1),并且在其上任一点处的切线斜率等于该点横坐标的倒数的两倍,试求该曲线方程.

设切线方程为F(x)任一点处的切线斜率F'(x)=2/x所以F(x)=2/x的不定积分=2lnx+C又因为F(1)=1所以2ln1+C=1,解得C=1所以所求曲线方程为F(x)=2lnx+1

已知曲线上任一点的切线斜率为k=4x^3-1,且曲线经过(1,3)求曲线方程

曲线上任一点的切线斜率为k=4x^3-1,设曲线方程为y=x^4-x+c将点(1,3)代入得c=3,所以曲线方程为y=x^4-x+3

求一曲线,且有如下性质:曲线上任一点的切线在x,y轴上的截距之和恰好等于该点的斜率.

如果是切线斜率的话,貌似就是一个圆,只要圆心在原点的正圆.还有斜率好像是针对直线的吧,该点斜率?是原点至点斜率,还是切线斜率?再问:这是大学数学专业常微分里面的一道题。。。再答:专业的?常微分?还真不