曲线上任意一点的切线斜率恒为该点的横坐标与纵坐标之比

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/20 10:48:08
曲线上任意一点的切线斜率恒为该点的横坐标与纵坐标之比
设一曲线过原点且在该曲线上任意一点(x,y)处的切线斜率为x3,则该曲线方程为______.

曲线上任意一点(x,y)处的切线斜率为x3,即dydx=x3对上述微分方程积分可得:y=∫dydxdx=∫x3dx=14x4+C,C为任意常数.因为曲线经过原点,所以,将原点坐标(0,0)代入上述方程

设曲线过点(1,1),且在该曲线上任意一点P(x,y)处的切线斜率为4x,求该曲线的方程

解这曲线为y=2x^2-1.求导y'=4x即函数在点P(x,y)处的切线斜率为4x,且过点(1,1)

设过曲线上任意一点的切线的斜率,都等于该点与坐标原点所连直线斜率的3倍,求此曲线方程.

设曲线为y(x)点P(x,y)为曲线上一点,其切线斜率k=y'(x)该点与坐标原点所连直线斜率的3倍:k=3y/x即y'=3y/x即;dy/y=3dx/xlny=3lnx+c1y=cx^3

某曲线经过点(3,5),且曲线上任意一点的切线斜率是该点横坐标的平方的倒数加上1/3,求该曲线方程

设曲线为f(x)则曲线任意一点斜率为f'(x)(导数)则f'(x)=1/x^2+1/3对上式积分得f(x)=∫1/x^2+1/3dx=-1/x+1/3x+c(c为常数)对过点(3,5)得5=-1/3+

一条过原点的曲线,它上任意一点(x,y)处的切线斜率为2x+y,求曲线的方程

由题意,得y'=2x+yy(0)=0j解y‘=2x+yy’-y=2xy=e^∫dx[∫2xe^(-∫dx)dx+c]=e^x(-2xe^(-x)-2e^(-x)+c)代入x=0,y=0,得0=-2+c

设曲线经过点m(1,0)且在其上任意一点x处的切线斜率为3x^2,求曲线方程

假设该曲线方程为y=f(x)由题意得:f'(x)(即f(x)的导数)=3x^2对其积分可得:y=f(x)=x^3+c(c为一个常数)将m点坐标代入得:0=1+cc=-1所以曲线方程:y=x^3-1

设曲线过(0,1)且其上任意点(x,y)的切线斜率为2x,则该曲线的方程是多少

根据题意,这个曲线方程的导数是y'=2x,积分可以求得其方程为y=x^2+C,C为常数;代入(0,1),得到C=1,所以y=x^2+1

设曲线经过点(e^2,1),且曲线上任意一点(x,y)处的切线斜率等于该点横坐标的倒数,求此曲线的方程.

由题意得:y(1)=2y'=x即dy=xdx积分:y=x^2/2+c代入y(1)=1/2+c=2,得:c=3/2因此y=x^2/2+3/2

什么是斜率?曲线上一点的斜率如何计算?是从原点到该点的连线?还是该点的切线?

斜率,亦称“角系数”,表示一条直线相对于横坐标轴的倾斜程度.一条直线与某平面直角坐标系横坐标轴正半轴方向的夹角的正切值即该直线相对于该坐标系的斜率.如果直线与x轴互相垂直,直角的正切直无穷大,故此直线

已知P(u ,v )是曲线(1+x^2)y-x=0 上的一点,写出该曲线在点P处的切线的方程,并分别求出切线斜率为1时.

y=x/(1+x^2)y'=(1-x^2)/(1+x^2)^2P处切线y-v=(1-u^2)/(1+u^2)^2(x-u)由y'=1,得x=0y=0∴切线斜率为1时切点为(0.0)由y'=0,得x=1

设曲线经过点(1,2),且曲线上任意一点处的切线斜率等于这点横坐标的两倍,求此曲线的方程?

设函数为y=f(x),则由题意有y'=2x,即dy/dx=2x,dy=2xdx,两边积分得y=x^2+C代入点(1,2)得C=1,所以方程为y=x^2+1

高数 设曲线过点(-1,2),并且曲线上任意一点处的切线斜率等于这点横坐标的两倍,求此曲线方程.

任意点再问:ΪʲôҪ��ô��Ⱑ��再答:(-1,2)这个条件是单独的;与后者不相干再问:�Ҿ�����ⲻ�ˣ����ǰ���Ƕ��ţ��ֲ��Ǿ�š���������ѧ��������IJ��Զ���

求证:函数y=x+1/x图像上的任意一点处的切线斜率小于1,并求出其斜率为0的切线的方程

解由y=x+1/x求导y′=(x+1/x)′=1-1/x²即由1/x²>0即-1/x²<0即1-1/x²<1即y′<1即:函数y=x+1/x图像上的任意一点处的

在曲线y=4/(x^2)上求一点p,使得曲线在该点处的切线的斜率为135度

y=4/x²y'=-8/x³因为tan135°=-1所以令y'=-8/x³=-1得x³=8所以x=2因为x=2时y=4/2²=1所以点P为(2,1)

已知函数f(x)=1/3x^3-2x^2+3x(x属于R)的图像为曲线C.(1)求曲线C上任意一点处的切线的斜率的取值范

1)、求导:f’(x)=x^2-4x+3=(x-2)^2-1由任意点处的斜率就是f'(x),f’(x)的值域为〔-1,+∞)所以曲线C上任意一点处的切线的斜率的取值范围〔-1,+∞)2)若曲线C上存在

曲线上任一点处的切线斜率恒为该点的横坐标与纵坐标之比,则此曲线的方程是

应为等轴双曲线或斜率绝对值为1的过原点的直线,设曲线方程为f(x)=y,则由已知有:y‘=x/y即y’*y=x;两边同时取关于dx的不定积分有:∫y‘ydx=∫xdx即∫ydy=∫xdx,得:y^2-