曲线积分根号下x² y²dx

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 21:01:20
曲线积分根号下x² y²dx
积分 1/(1+根号下 3x) dx

原式=(1/3)∫{1/[1+√(3x)]}d(3x).令√(3x)=u,则3x=u^2,∴d(3x)=2udu.∴原式=(1/3)∫[2u/(1+u)]du   =(2/3)∫{[(u+1)-1]/

曲线积分问题.求∫根号下(2y²+z²)ds,其中积分曲线c为封闭曲线x²+y²

积分曲线就是一个大圆的圆周为了清楚我用图片写给你了,要被审核一会(请稍等几分钟,或者直接hi我)再问:麻烦你在看看这道题好么求∫x²ds,其中c为x²+y²+z²

求曲线积分∫(x^2+y)dx-(x+sin^2y)dy,其中L是圆周y=根号下2x-x^2上由点(0,0)到(2,0)

自行画图补线段L1:y=0,x从2到0,这样L+L1构成封闭曲线,可以使用格林公式,注意本封闭曲线为顺时针旋转,与格林公式中的逆时针不符,所以用格林公式时要多加一个负号.∮(x^2+y)dx-(x+s

根号下((1-X^2)3)dx积分

令x=sinu,则√(1-x²)=cosu,dx=cosudu∫[√(1-x²)]³dx=∫(cosu)^4du=(1/4)∫(1+cos2u)²du=(1/4

根号下(1+x^-4)dx的积分

根号下(1+x^-4)dx的积分=x-[x^(-3)]/3+c

计算不定积分 积分号arctan (根号下x) dx

∫arctan(√x)dx分部积分=xarctan(√x)-∫x/(1+x)d(√x)=xarctan(√x)-∫(x+1-1)/(1+x)d(√x)=xarctan(√x)-∫1d(√x)+∫1/(

求积分(cos根号下x)dx

∫cos√xdx=2√xsin√x+2cos√x+c

积分[(1/(x^2) )*根号下(1+x^2)]dx

可用变量代换求解,如图.

定积分根号下(4-x^2)dx

再代入1和-1,结果是√3+2π/3

积分号x*根号下(1-x^2)dx

负二分之一积分号根号下(1-x∧2)d(1-x∧2)再答:可懂了?再问:负二分之一是怎么求的?再答:d(1-x∧2)再答:变成-2xdx再答:而原来只有xdx再答:所以提取-1╱2再问:再答:再答:亲

积分dx/根号下(1-x^2)

原式=∫1/(1-x)(1+x)dx=1/2∫[1/(1-x)+1/(1+x)]dx=1/2[-ln|1-x|+ln|1+x|]+c=1/2ln|(1+x)/(1-x)|+c啊,原来有根号啊应该是ar

积分上限2,积分下限0,dx/根号下x+1+根号下(X+1)^3

∫1/((x+1)^0.5+(x+1)^1.5)dx=∫1/((x+1)^0.5+(x+1)^1.5)d(x+1)=∫1/((x+1)^0.5(1+(x+1))d(x+1)=∫1/((x+1)^0.5

求积分 ∫根号下(x^2+1)dx

使用分部积分法来做∫√(x²+1)dx=x*√(x²+1)-∫x*d√(x²+1)=x*√(x²+1)-∫x²/√(x²+1)dx=x*√(

求积分dx/根号下[x+(根号x)]

令u=√x,则du=dx/(2√x)∫dx/√(x+√x)=2∫u/√(u²+u)du=2∫u/√[(u+1/2)²-1/4]du=2∫(1/2·sect-1/2)/√[1/4·s

求 积分 x^3 * 根号下 1-x^2 dx

再问:导数第三步那里我没化回sint的形式直接把x=arcsinx反带可以吗?再答:可以