曲线积分根号下x² y²dx
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 21:01:20
原式=(1/3)∫{1/[1+√(3x)]}d(3x).令√(3x)=u,则3x=u^2,∴d(3x)=2udu.∴原式=(1/3)∫[2u/(1+u)]du =(2/3)∫{[(u+1)-1]/
积分曲线就是一个大圆的圆周为了清楚我用图片写给你了,要被审核一会(请稍等几分钟,或者直接hi我)再问:麻烦你在看看这道题好么求∫x²ds,其中c为x²+y²+z²
自行画图补线段L1:y=0,x从2到0,这样L+L1构成封闭曲线,可以使用格林公式,注意本封闭曲线为顺时针旋转,与格林公式中的逆时针不符,所以用格林公式时要多加一个负号.∮(x^2+y)dx-(x+s
令x=sinu,则√(1-x²)=cosu,dx=cosudu∫[√(1-x²)]³dx=∫(cosu)^4du=(1/4)∫(1+cos2u)²du=(1/4
根号下(1+x^-4)dx的积分=x-[x^(-3)]/3+c
∫arctan(√x)dx分部积分=xarctan(√x)-∫x/(1+x)d(√x)=xarctan(√x)-∫(x+1-1)/(1+x)d(√x)=xarctan(√x)-∫1d(√x)+∫1/(
∫cos√xdx=2√xsin√x+2cos√x+c
可用变量代换求解,如图.
再代入1和-1,结果是√3+2π/3
负二分之一积分号根号下(1-x∧2)d(1-x∧2)再答:可懂了?再问:负二分之一是怎么求的?再答:d(1-x∧2)再答:变成-2xdx再答:而原来只有xdx再答:所以提取-1╱2再问:再答:再答:亲
原式=∫1/(1-x)(1+x)dx=1/2∫[1/(1-x)+1/(1+x)]dx=1/2[-ln|1-x|+ln|1+x|]+c=1/2ln|(1+x)/(1-x)|+c啊,原来有根号啊应该是ar
∫1/((x+1)^0.5+(x+1)^1.5)dx=∫1/((x+1)^0.5+(x+1)^1.5)d(x+1)=∫1/((x+1)^0.5(1+(x+1))d(x+1)=∫1/((x+1)^0.5
使用分部积分法来做∫√(x²+1)dx=x*√(x²+1)-∫x*d√(x²+1)=x*√(x²+1)-∫x²/√(x²+1)dx=x*√(
令u=√x,则du=dx/(2√x)∫dx/√(x+√x)=2∫u/√(u²+u)du=2∫u/√[(u+1/2)²-1/4]du=2∫(1/2·sect-1/2)/√[1/4·s
再问:导数第三步那里我没化回sint的形式直接把x=arcsinx反带可以吗?再答:可以