曲线积分正向闭路是哪个方向

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 20:57:18
曲线积分正向闭路是哪个方向
复变函数 1.复合闭路定理 要求 f(z)是解析函数在D内的解析函数,但为什么有些含奇点的函数在闭曲线上求积分的时候也在

复合闭路定理是由柯西积分定理推广得到的.它的意义是指函数沿着边界C的积分等于函数沿着C的内边界的积分之和.你把每个奇点用C的内部的许多C''包围起来,符合复合闭路定理的要求,那自然含奇点的函数在闭曲线

高数 曲线积分 格林公式 方向 疑惑.

这个问题是这样的:首先明白一个概念:什么是区域边界是正向的,就是你站在曲线上走时,向左才能看到区域,你么你走的是正向.反之是负向的.你补了一个曲线小圆l,它与外围大曲线L联合形成一个区域(即你图中绿部

假如一列波向x轴正向传播 振源的质点是先向哪个方向振动

完全无关系,叫我怎么回答振源的质点是先向哪个方向振动只会决定波刚开始是向上或向下振动,而不是左右.

如题:设L是由曲线y^3=x^2与直线y=x连接起来的正向闭曲线,计算 (x^2)ydx+y^2dy的曲线积分(积分符号

设C是由曲线y³=x²与直线y=x连接起来的正向闭曲线,计算∮x²ydx+y²dy的曲线积分C:y=x^(2/3),y=x;区域D:由曲线C所围的区域;P=x&

e^x(1-cosy)dx+e^x(1+siny)dy曲线积分,L 0≦y≦sinx,0≦x≦π 正向边界曲线

令P=e^x(1-cosy),Q=e^x(1+siny)则αP/αy=e^x*siny,αQ/αx=e^x(1+siny)故根据格林定理得原曲线积分=∫∫(αQ/αx-αP/αy)dxdy(S是区域:

高数求曲线积分

这个要利用到曲线积分的轮换对称性,轮换x→y,y→z,z→x,球面与平面的方程不变,所以曲线L具有轮换对称性在,那么就有等式:∫f(x,y,z)ds=∫f(y,z,x)ds=∫f(z,x,y)ds.对

曲线积分∫(y^2+sinx)dx+(cos^2y-2x)dy L为星形线所围区域的正向边界 用格林公式

∫(y^2+sinx)dx+(cos^2y-2x)dy=∫(-2y+sinx)dx+(cos^2y-2x)dy+∫(y^2+2y)dx前一个格林公式等于零∫(y^2+2y)dx将星形线参数方程带入∫[

曲线积分 

根据积分曲面上,x,y,z的地位相同,所以∫x^2dS=∫y^2dS=∫z^2dS且∫xdS=∫ydS=∫zdS所以原积分=(2/3)∫(x^2+y^2+z^2)dS+(2/3)∫(x+y+z)dS=

L是定点分别为(-1/2,5/2),(1,5),(2,1)的三角形正向边界,是计算曲线积分∮L(2x-y+4)dx+(5

令P=2x-y+4,Q=5y-3x-6∂P/∂y=-1,∂Q/∂x=-3∮_L(2x-y+4)dx+(5y-3x-6)dy=∫∫_D(∂Q/

闭区域d是由简单的闭曲线l(正向)所围,下列积分不等于d面积的积分是

因为格林公式里对dx之前的一项求关于y的偏导的时候是有负号的,所以如果是ydx的话,要是负的才行.

L为取正向的圆周,x^2+y^2=R^2,求曲线积分∮xy^2dy-x^2ydx的值(答案是πR^4/2)

因为取格林公式后,由线积分变成面积分,二重积分(x^2+y^2)dxdy,(x^2+y^2)不能用圆周方程x^2+y^2=R^2替换,因为不在线上一重积分了,改为在圆面上二重积分了,应该用极坐标计算,

求曲线积分fxy^2dy-x^2ydx其中L为圆周x^2+y^2=a^2的正向,

因为P=-x^2y,Q=xy^2.所以Py=-x^2,Qx=y^2.利用格林公式:∮cP(x,y)dx+Q(x,y)dy=∫∫D(dQ/dx-dP/dy)dxdy,其中c是的取正向的边界曲线.故原式=

设L为取正向的圆周x²+y²=4,则曲线积分∫L(x²+y)dx+(x-y²)d

用格林公式将一个封闭曲线上的线积分化为在此封闭区域内的面积分∫L(x²+y)dx+(x-y²)dy=(在曲线L围成的封闭区域上积分)∫∫{[∂(x-y²)/&