曲线积分正向闭路是哪个方向
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 20:57:18
复合闭路定理是由柯西积分定理推广得到的.它的意义是指函数沿着边界C的积分等于函数沿着C的内边界的积分之和.你把每个奇点用C的内部的许多C''包围起来,符合复合闭路定理的要求,那自然含奇点的函数在闭曲线
这个问题是这样的:首先明白一个概念:什么是区域边界是正向的,就是你站在曲线上走时,向左才能看到区域,你么你走的是正向.反之是负向的.你补了一个曲线小圆l,它与外围大曲线L联合形成一个区域(即你图中绿部
完全无关系,叫我怎么回答振源的质点是先向哪个方向振动只会决定波刚开始是向上或向下振动,而不是左右.
设C是由曲线y³=x²与直线y=x连接起来的正向闭曲线,计算∮x²ydx+y²dy的曲线积分C:y=x^(2/3),y=x;区域D:由曲线C所围的区域;P=x&
用格林公式啊原式=∮∮4ds我怎么就等于2呢B吧
令P=e^x(1-cosy),Q=e^x(1+siny)则αP/αy=e^x*siny,αQ/αx=e^x(1+siny)故根据格林定理得原曲线积分=∫∫(αQ/αx-αP/αy)dxdy(S是区域:
这个要利用到曲线积分的轮换对称性,轮换x→y,y→z,z→x,球面与平面的方程不变,所以曲线L具有轮换对称性在,那么就有等式:∫f(x,y,z)ds=∫f(y,z,x)ds=∫f(z,x,y)ds.对
∫(y^2+sinx)dx+(cos^2y-2x)dy=∫(-2y+sinx)dx+(cos^2y-2x)dy+∫(y^2+2y)dx前一个格林公式等于零∫(y^2+2y)dx将星形线参数方程带入∫[
根据积分曲面上,x,y,z的地位相同,所以∫x^2dS=∫y^2dS=∫z^2dS且∫xdS=∫ydS=∫zdS所以原积分=(2/3)∫(x^2+y^2+z^2)dS+(2/3)∫(x+y+z)dS=
正南方
令P=2x-y+4,Q=5y-3x-6∂P/∂y=-1,∂Q/∂x=-3∮_L(2x-y+4)dx+(5y-3x-6)dy=∫∫_D(∂Q/
因为格林公式里对dx之前的一项求关于y的偏导的时候是有负号的,所以如果是ydx的话,要是负的才行.
二型曲线积分有方向的你这个应该是负方向
因为取格林公式后,由线积分变成面积分,二重积分(x^2+y^2)dxdy,(x^2+y^2)不能用圆周方程x^2+y^2=R^2替换,因为不在线上一重积分了,改为在圆面上二重积分了,应该用极坐标计算,
因为P=-x^2y,Q=xy^2.所以Py=-x^2,Qx=y^2.利用格林公式:∮cP(x,y)dx+Q(x,y)dy=∫∫D(dQ/dx-dP/dy)dxdy,其中c是的取正向的边界曲线.故原式=
用格林公式将一个封闭曲线上的线积分化为在此封闭区域内的面积分∫L(x²+y)dx+(x-y²)dy=(在曲线L围成的封闭区域上积分)∫∫{[∂(x-y²)/&