曲面 上平行于平面 的点处的切平面方程为
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 01:07:43
平行,也可以是两平面重合.平行一同一直线的平面不一定平行.和两条异面直线都平行的两个平面平行,平行,定理,平行于相交直线的平面,平行.要有,立体想象力.
用反证法呀.假设有一条直线不在过该点且平行与已知平面的平面内,那么必然会得到过平面外一点,有两个平面与已知平面平行的矛盾结论,从而原假设不成立.得证.
设切点为P(x0,y0,z0),故曲面在切点处的切平面的法向量为n={2x0,2y0,−1}又由于n∥(2,2,1),且切点P在曲面上∴2x02=2y02=−11x02+y02+z0=1解得:x0=y
切平面法向量为(2X,2Y,-1),平行于(2,2,1),则X=Y=-1,切点为(-1,-1-1)切平面方程为2X+2Y+Z+5=0.
a=-5,b=-2曲面z=x^2+y^2,令f(x)=x^2+y^2-z对f(x)分别对x,y,z求偏导数,得到偏导数分别为2x,2y,-1,所以把点(1,-2,5)代进去得到曲面z=x^2+y^2在
设F(x,y,z)=xy-z那么它的法向量为n=(Fx,Fy,Fz)=(y,x,-1)(Fx,Fy,Fz为分别对F(x,y,z)的x,y,z求偏导数)又平面x+3y+z+9=0的法向量设为n'=(k,
http://zhidao.baidu.com/link?url=MDovhDXakNf_-glTeyO3GkfqOhLXNaIcV1ZF7wkYTLFHedpeQ0w89KenXbleQxqnzL-
可用偏导数来求解.F(x,y,z)=xy+yz+zx-1,Fx(X,Y,Z)=y+z(对x求偏导数),Fy(X,Y,Z)=x+z(对y求偏导数),Fz(X,Y,Z)=y+x(对z求偏导数),在点(1,
若平面外一条线平行于一个平面,则这条线与这个平面上所有的线都不相交.但与这个平面上的线可以有平行和异面两种.
平行于同一平面的两个平面平行
设切点P0,把曲面方程写成F(x,y,z)=0,则Fx、Fy、Fz在P0的值就是切平面法向量的三个坐标,它们与1、4、6成比例★又切点在曲面上★★据★及★★解出P0.
作平面1与三个平面相交,交线L1∥L2∥L3作平面1的相交平面2与三个平面相交,L4∥L5∥L6L1与L4L2与L5L3与L6相交由一平面内的两相交直线分别平行另一平面,那么两个平面平行的定理得:平行
曲面xyz=1上点到原点距离L=x²+y²+z²=(1/xy)+(1/yz)+(1/xz)≥3√(1/xyz)²=3,当且仅当x=y=z=1时取得最小值.切平面
设曲面议程为F(X,Y,Z)其对XYZ的偏导分别为(X,Y,Z),F2(X,Y,Z),F3(X,Y,Z)将点(2,1,0)代入得[F1,F2,F3](法向量)切平面方程F1*(X-2)+F2*(Y-1
设:F(x,y,z)=xy-z,则曲面方程为:F(x,y,z)=0.F(x,y,z)对x,y,z的偏导数分别顺次为:y,x,-1.故曲面在点(x,y,z)处的法线向量为:n=(y,x,-1)面平面x+
曲面x³y-z=0,分别对x、y、z求偏导得法向量(3x²y,x³,1),垂直于平面6x-8y+z+9=0的向量是(6a,-8a,a),所以a=1,解得x=-2,y=1/
z=4-x²-y²z'x=-2x,z'y=-2yP点P处的切平面的法向量n=(2x0,2y0,1)//(2,2,1)x0=y0=1z0=4-1-1=2P点坐标为(1,1,2)
x-y-1=0x+y-3=0;z=0